Solveeit Logo

Question

Question: Let $P$ be a point on the ellipse $x^2 + 2y^2 = 2$ with foci $S$ & $S'$. The locus of incentre of $\...

Let PP be a point on the ellipse x2+2y2=2x^2 + 2y^2 = 2 with foci SS & SS'. The locus of incentre of PSS\triangle PSS' is a conic CC.

Let α\alpha be the eccentricity of conic CC. [100α2][100\alpha^2] is equal to, where [x][x] is greatest integer less than or equal to xx.

Answer

82

Explanation

Solution

  1. Ellipse Properties:
    The given ellipse is

    x2+2y2=2x22+y21=1.x^2+2y^2=2\quad\Longleftrightarrow\quad\frac{x^2}{2}+\frac{y^2}{1}=1.

    Its foci SS and SS' are at (1,0)(1,0) and (1,0)(-1,0) because for an ellipse in the form x2a2+y2b2=1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 (with a2=2a^2=2, b2=1b^2=1), the focal distance is c=a2b2=1=1c=\sqrt{a^2-b^2}=\sqrt{1}=1.

  2. Using the Definition of the Ellipse:
    For any point P=(x,y)P=(x,y) lying on the ellipse, the sum of distances from PP to the foci is constant:

    PS+PS=22.PS+PS' = 2\sqrt{2}.

    Denote

    b=PS=(x+1)2+y2,c=PS=(x1)2+y2.b = PS'=\sqrt{(x+1)^2+y^2},\quad c = PS=\sqrt{(x-1)^2+y^2}.

    Hence, b+c=22b+c=2\sqrt{2} is constant.

  3. Barycentric Formula for the Incentre:
    For triangle PSSPSS' with vertices P=(x,y)P=(x,y), S=(1,0)S=(1,0), and S=(1,0)S'=(-1,0), the incenter I=(h,k)I=(h,k) is given by

    h=ax+b1+c(1)a+b+c,k=aya+b+c,h=\frac{a\cdot x+b\cdot 1+c\cdot (-1)}{a+b+c},\quad k=\frac{a\cdot y}{a+b+c},

    where aa is the side opposite PP, i.e. a=SS=2a=SS'=2.
    Notice that by computing bcb-c and using b+c=22b+c=2\sqrt{2}, one obtains (after simplification)

    h=2xb+c=x2,k=2y2+b+c=2y2+22=y1+2.h=\frac{2x}{b+c}=\frac{x}{\sqrt{2}},\quad k=\frac{2y}{2+b+c}=\frac{2y}{2+2\sqrt{2}}=\frac{y}{1+\sqrt{2}}.
  4. Finding the Locus of the Incentre:
    Express xx and yy in terms of hh and kk:

    x=h2,y=k(1+2).x = h\sqrt{2},\quad y = k(1+\sqrt{2}).

    Substitute into the ellipse equation x2+2y2=2x^2+2y^2=2:

    (h2)2+2[k(1+2)]2=2,(h\sqrt{2})^2+2\Big[k(1+\sqrt{2})\Big]^2 = 2,

    which simplifies to

    2h2+2k2(1+2)2=2.2h^2+2k^2(1+\sqrt{2})^2=2.

    Dividing by 2 gives

    h2+k2(1+2)2=1.h^2+k^2(1+\sqrt{2})^2=1.

    This is an ellipse (let it be CC) with horizontal semi-axis a=1a'=1 and vertical semi-axis b=11+2b'=\dfrac{1}{1+\sqrt{2}}.

  5. Eccentricity of Conic CC:
    Since a>ba'>b' (because 1>11+21>\frac{1}{1+\sqrt{2}}), the eccentricity α\alpha is

    α=1(ba)2=11(1+2)2.\alpha = \sqrt{1-\left(\frac{b'}{a'}\right)^2} = \sqrt{1-\frac{1}{(1+\sqrt{2})^2}}.

    Notice that

    (1+2)2=3+22.(1+\sqrt{2})^2 = 3+2\sqrt{2}.

    Thus,

    α2=113+22=3+2213+22=2+223+22.\alpha^2 = 1-\frac{1}{3+2\sqrt{2}} = \frac{3+2\sqrt{2}-1}{3+2\sqrt{2}} = \frac{2+2\sqrt{2}}{3+2\sqrt{2}}.

    Recognize that 3+22=(1+2)23+2\sqrt{2} = (1+\sqrt{2})^2; hence,

    α2=2(1+2)(1+2)2=21+2.\alpha^2 = \frac{2(1+\sqrt{2})}{(1+\sqrt{2})^2} = \frac{2}{1+\sqrt{2}}.

    Multiply numerator and denominator by (21)(\sqrt{2}-1) to rationalize:

    α2=2(21)(2+1)(21)=2(21).\alpha^2 = \frac{2(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)} = 2(\sqrt{2}-1).
  6. Final Computation:
    We need [100α2][100\alpha^2] where [x][\,x\,] denotes the floor function:

    100α2=1002(21)=200(21).100\alpha^2 = 100 \cdot 2(\sqrt{2}-1)=200(\sqrt{2}-1).

    Approximating 21.414\sqrt{2} \approx 1.414,

    200(1.4141)=200(0.414)82.8.200(1.414-1)=200(0.414)\approx82.8.

    Taking the greatest integer [82.8]=82[82.8]=82.