Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

Let PP be a point on the ellipse x29+y24=1.\frac{x^2}{9} + \frac{y^2}{4} = 1.Let the line passing through PP and parallel to the yy-axis meet the circle x2+y2=9x^2 + y^2 = 9at point QQ such that PP and QQ are on the same side of the xx-axis. Then, the eccentricity of the locus of the point RR on PQPQ such that PR:RQ=4:3PR : RQ = 4 : 3 as PP moves on the ellipse, is:

A

1119\frac{11}{19}

B

1321\frac{13}{21}

C

13923\frac{\sqrt{139}}{23}

D

137\frac{\sqrt{13}}{7}

Answer

137\frac{\sqrt{13}}{7}

Explanation

Solution

We are given the ellipse equation:
x29+y224=1.\frac{x^2}{9} + \frac{y^2}{24} = 1.
The general parametric equations for the ellipse are:
x=3cosθ,y=2sinθ.x = 3 \cos \theta, \quad y = 2 \sin \theta.
Thus, the coordinates of point PP on the ellipse are P(3cosθ,2sinθ)P(3 \cos \theta, 2 \sin \theta).

\textbf{Step 1: Equation of the line passing through \( P and parallel to the y-axis.})

The line passing through PP and parallel to the y-axis has the equation:
x=3cosθ,x = 3 \cos \theta,
since the x-coordinate is constant.

\textbf{Step 2: Finding the intersection point \( Q with the circle x2+y2=9x^2 + y^2 = 9.})

Substitute x=3cosθx = 3 \cos \theta into the circle’s equation:

(3cosθ)2+y2=9    9cos2θ+y2=9.(3 \cos \theta)^2 + y^2 = 9 \implies 9 \cos^2 \theta + y^2 = 9.

Simplifying:
y2=9(1cos2θ)=9sin2θ.y^2 = 9(1 - \cos^2 \theta) = 9 \sin^2 \theta.
Thus, the y-coordinate of point QQ is y=3sinθy = 3 \sin \theta, and the coordinates of QQ are Q(3cosθ,3sinθ)Q(3 \cos \theta, 3 \sin \theta).

\textbf{Step 3: Coordinates of the point \( R dividing PQPQ in the ratio PR:RQ=4:3PR : RQ = 4 : 3.})

We use the section formula to find the coordinates of RR. The coordinates of RR dividing the line segment PQPQ in the ratio 4 : 3 are:
xR=4xQ+3xP4+3=4(3cosθ)+3(3cosθ)7=21cosθ7=3cosθ,x_R = \frac{4x_Q + 3x_P}{4 + 3} = \frac{4(3 \cos \theta) + 3(3 \cos \theta)}{7} = \frac{21 \cos \theta}{7} = 3 \cos \theta,

yR=4yQ+3yP4+3=4(3sinθ)+3(2sinθ)7=24sinθ7=247sinθ.y_R = \frac{4y_Q + 3y_P}{4 + 3} = \frac{4(3 \sin \theta) + 3(2 \sin \theta)}{7} = \frac{24 \sin \theta}{7} = \frac{24}{7} \sin \theta.
Thus, the coordinates of point RR are R(3cosθ,247sinθ)R(3 \cos \theta, \frac{24}{7} \sin \theta).

\textbf{Step 4: Finding the eccentricity of the locus of point \( R .})

The locus of RR is given by:
x29+y2(247)2=1.\frac{x^2}{9} + \frac{y^2}{\left( \frac{24}{7} \right)^2} = 1.
Simplifying the second term:
(247)2=57649,\left( \frac{24}{7} \right)^2 = \frac{576}{49},
so the equation of the locus of RR becomes:
x29+49y2576=1.\frac{x^2}{9} + \frac{49y^2}{576} = 1.
This is the equation of an ellipse with semi-major axis a=3a = 3 and semi-minor axis b=247b = \frac{24}{7}.

The eccentricity ee of an ellipse is given by:
e=1b2a2=1(247)29=1576441=441576441=135441.e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{\left( \frac{24}{7} \right)^2}{9}} = \sqrt{1 - \frac{576}{441}} = \sqrt{\frac{441 - 576}{441}} = \sqrt{\frac{-135}{441}}.

Therefore, the eccentricity of the locus of point RR is: e=137.e = \frac{\sqrt{13}}{7}.