Solveeit Logo

Question

Question: Let P be a point inside a triangle ABC such that PA=PC=AB and angles ABC, PAC and PCB are of magnitu...

Let P be a point inside a triangle ABC such that PA=PC=AB and angles ABC, PAC and PCB are of magnitude 12α\alpha, 3α\alpha and 2α\alpha respectively. Then maximum value of expression f(θ\theta) = sin 5α\alpha sinθ\theta + cos 10α\alpha cosθ\theta,(θ\theta ∈ R) is equal to,

A

2\sqrt{2}

B

1

C

2

D

12\frac{1}{\sqrt{2}}

Answer

12\frac{1}{\sqrt{2}}

Explanation

Solution

  1. Notice that the expression
f(θ)=sin5αsinθ+cos10αcosθ,f(\theta)=\sin5\alpha\sin\theta+\cos10\alpha\cos\theta,

can be written in the form

Asinθ+Bcosθ,A\sin\theta+B\cos\theta,

whose maximum value (over θR\theta\in\Bbb R) equals

R=A2+B2=sin25α+cos210α.R=\sqrt{A^2+B^2}=\sqrt{\sin^2 5\alpha+\cos^2 10\alpha}\,.
  1. In the given geometric configuration the point PP inside ABC\triangle ABC satisfies
PA=PC=AB.PA=PC=AB.

By using the angles provided:

  • ABC=12α\angle ABC=12\alpha,
  • PAC=3α\angle PAC=3\alpha,
  • PCB=2α\angle PCB=2\alpha, one may show (by splitting A\angle A of ABC\triangle ABC and also considering ABP\triangle ABP and BPC\triangle BPC) that consistency forces
α=6.\alpha=6^\circ.
  1. Then
5α=30,sin5α=sin30=12,5\alpha=30^\circ,\qquad \sin5\alpha=\sin30^\circ=\tfrac12,

and

10α=60,cos10α=cos60=12.10\alpha=60^\circ,\qquad \cos10\alpha=\cos60^\circ=\tfrac12.
  1. Therefore,
R=(12)2+(12)2=14+14=12=12.R=\sqrt{\left(\tfrac12\right)^2+\left(\tfrac12\right)^2}=\sqrt{\tfrac{1}{4}+\tfrac{1}{4}}=\sqrt{\tfrac{1}{2}}=\tfrac1{\sqrt2}\,.

Thus, the maximum value of f(θ)f(\theta) is 12\tfrac{1}{\sqrt2}.