Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

Let PP be a parabola with vertex (2,3)(2, 3) and directrix 2x+y=62x + y = 6. Let an ellipse E:x2a2+y2b2=1E : \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a>ba > b, of eccentricity 12\frac{1}{\sqrt{2}} pass through the focus of the parabola PP. Then the square of the length of the latus rectum of EE is

A

3858\frac{385}{8}

B

3478\frac{347}{8}

C

51225\frac{512}{25}

D

65625\frac{656}{25}

Answer

65625\frac{656}{25}

Explanation

Solution

Find the focus of the parabola. The equation of the directrix is:

2x+y=62x + y = 6

The vertex of the parabola is (2,3)(2, 3). The equation of a parabola with vertex (h,k)(h, k) and directrix

Ax+By+C=0 has focus at: (h+AA2+B2,k+BA2+B2)Ax + By + C = 0 \text{ has focus at: } \left( h + \frac{A}{\sqrt{A^2 + B^2}}, k + \frac{B}{\sqrt{A^2 + B^2}} \right)

For our parabola:

A=2,B=1,C=6,h=2,k=3A = 2, \quad B = 1, \quad C = -6, \quad h = 2, \quad k = 3

Thus, the distance from the vertex to the directrix is:

22+13622+12=4+365=15\left| \frac{2 \cdot 2 + 1 \cdot 3 - 6}{\sqrt{2^2 + 1^2}} \right| = \left| \frac{4 + 3 - 6}{\sqrt{5}} \right| = \frac{1}{\sqrt{5}}

The focus of the parabola PP is at:

(2+25,3+15)\left( 2 + \frac{2}{\sqrt{5}}, 3 + \frac{1}{\sqrt{5}} \right)

Use the eccentricity of the ellipse. The eccentricity ee of the ellipse EE is given as 12\frac{1}{\sqrt{2}}. For an ellipse,

e=a2b2ae = \frac{\sqrt{a^2 - b^2}}{a}

Squaring both sides:

12=a2b2a2\frac{1}{2} = \frac{a^2 - b^2}{a^2} a2b2=a22a^2 - b^2 = \frac{a^2}{2} b2=a22b^2 = \frac{a^2}{2}

Calculate the length of the latus rectum. The length of the latus rectum of an ellipse is given by 2b2a\frac{2b^2}{a}. Substituting b2=a22b^2 = \frac{a^2}{2}:

Latus Rectum=2a22a=a2a=a\text{Latus Rectum} = \frac{2 \cdot \frac{a^2}{2}}{a} = \frac{a^2}{a} = a

Find aa using the focus of the parabola. Since the ellipse passes through the focus of the parabola, substitute the coordinates of the focus into the ellipse equation and solve for aa and bb.

After finding aa, calculate (2b2a)2\left( \frac{2b^2}{a} \right)^2 to get the square of the latus rectum.

Thus, the answer is:

65625\frac{656}{25}