Question
Mathematics Question on Properties of Determinants
Let P be a 2×2 matrix such that [1 0] P = −21[11] and [01]P=21[−11] . If 0 and I denote the zero and identity matrices of order 2, respectively, then which of the following options is CORRECT ?
A
P8−P6+P4+P2=0
B
P8−P6−P4+P2=I
C
P8+P6+P4−P2=2I
D
P8−P6−P4−P2=0
Answer
P8+P6+P4−P2=2I
Explanation
Solution
Let P=[a cbd]
Given,
∴[10]P=2−1[11]
[10][a cbd]=[−212−1]
[ab]=[2−12−1]
and [01]P=21[−11]
[01][a cbd]=[−2121]
[cd]=[−2121]
∴a=2−1,b=2−1,c=2−1,d=21
P=21[−1 −1−11]
P2=21[−1 −1−11][−1 −1−11]=21[2 002]
P2=I
P4=I=P6=P8
P8+P6+P4−P4−P2
=I+I+I−I=2I