Solveeit Logo

Question

Mathematics Question on 3D Geometry

Let PP and QQ be the points on the line x+38=y42=z+12\frac{x+3}{8} = \frac{y-4}{2} = \frac{z+1}{2}which are at a distance of 6 units from the point R(1,2,3)R(1,2,3). If the centroid of the triangle PQRPQR is (α,β,γ)(\alpha, \beta, \gamma), then α2+β2+γ2\alpha^2 + \beta^2 + \gamma^2 is:

A

26

B

36

C

18

D
Answer

18

Explanation

Solution

We are given the line equation in symmetric form:

x+38=y42=z+12\frac{x+3}{8} = \frac{y-4}{2} = \frac{z+1}{2}

Let the parameter be tt. Then, we can parametrize the coordinates of any point on the line as:

x=8t3x = 8t - 3, y=2t+4y = 2t + 4, z=2t1z = 2t - 1

Thus, the points P and Q on the line can be written as:

P(8t13,2t1+4,2t11)P(8t_1 - 3, 2t_1 + 4, 2t_1 - 1), Q(8t23,2t2+4,2t21)Q(8t_2 - 3, 2t_2 + 4, 2t_2 - 1)

Step 1: Distance from P and Q to R(1, 2, 3)

We are also told that both P and Q are at a distance of 6 units from the point R(1, 2, 3). The distance between two points (x1,y1,z1)(x_1, y_1, z_1) and (x2,y2,z2)(x_2, y_2, z_2) is given by:

Distance=(x2x1)2+(y2y1)2+(z2z1)2\text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}

For the point P, the distance to R is:

(8t131)2+(2t1+42)2+(2t113)2=6\sqrt{(8t_1 - 3 - 1)^2 + (2t_1 + 4 - 2)^2 + (2t_1 - 1 - 3)^2} = 6

This simplifies to:

(8t14)2+(2t1+2)2+(2t14)2=6\sqrt{(8t_1 - 4)^2 + (2t_1 + 2)^2 + (2t_1 - 4)^2} = 6

Squaring both sides:

(8t14)2+(2t1+2)2+(2t14)2=36(8t_1 - 4)^2 + (2t_1 + 2)^2 + (2t_1 - 4)^2 = 36

Expanding each term:

(64t1264t1+16)+(4t12+8t1+4)+(4t1216t1+16)=36(64t_1^2 - 64t_1 + 16) + (4t_1^2 + 8t_1 + 4) + (4t_1^2 - 16t_1 + 16) = 36

Simplifying:

72t1272t1+36=3672t_1^2 - 72t_1 + 36 = 36

72t1272t1=072t_1^2 - 72t_1 = 0

72t1(t11)=072t_1(t_1 - 1) = 0

Thus, t1=0t_1 = 0 or t1=1t_1 = 1.

Similarly, for Q, we get the same equation, leading to the same values for t2t_2: t2=0t_2 = 0 or t2=1t_2 = 1.

Step 2: Coordinates of Points P and Q

For t1=0t_1 = 0, the coordinates of P are: P(-3, 4, -1)

For t1=1t_1 = 1, the coordinates of P are: P(5, 6, 1)

Similarly, for t2=0t_2 = 0, the coordinates of Q are: Q(-3, 4, -1)

For t2=1t_2 = 1, the coordinates of Q are: Q(5, 6, 1)

Step 3: Centroid of Triangle PQR

The centroid of a triangle with vertices at (x1,y1,z1)(x_1, y_1, z_1), (x2,y2,z2)(x_2, y_2, z_2), and (x3,y3,z3)(x_3, y_3, z_3) is given by:

(x1+x2+x33,y1+y2+y33,z1+z2+z33)\left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3} \right)

For the case t1=0t_1 = 0 and t2=1t_2 = 1, the coordinates of the centroid are:

(3+5+13,4+6+23,1+1+33)=(1,4,1)\left( \frac{-3 + 5 + 1}{3}, \frac{4 + 6 + 2}{3}, \frac{-1 + 1 + 3}{3} \right) = \left( 1, 4, 1 \right)

Step 4: Calculate α2+β2+γ2\alpha^2 + \beta^2 + \gamma^2

The centroid is (1, 4, 1), so:

α2+β2+γ2=12+42+12=18\alpha^2 + \beta^2 + \gamma^2 = 1^2 + 4^2 + 1^2 = 18

Thus, the value of α2+β2+γ2\alpha^2 + \beta^2 + \gamma^2 is 18\boxed{18}