Solveeit Logo

Question

Mathematics Question on Conic sections

Let P and Q be distinct points on the parabola y2=2xy^2 = 2x such that a circle with PQ as diameter passes through the vertex O of the parabola. If P lies in the first quadrant and the area of the triangle ?OPQ?OPQ is 32,3\sqrt{2}, then which of the following is (are) the coordinates of P ?

A

(4,22)\left(4,2 \sqrt{2}\right)

B

(9,32)\left(9,3 \sqrt{2}\right)

C

(14,12)\left(\frac{1}{4}, \frac{1}{\sqrt{2}}\right)

D

(1,2)\left(1, \sqrt{2}\right)

Answer

(1,2)\left(1, \sqrt{2}\right)

Explanation

Solution

Let coordinates of P and Q are P(2t12,2t1),Q(2t22,2t2)\left(2t_{1}^{2}, 2t_{1}\right), Q\left(2t_{2}^{2}, 2t_{2}\right) As the circle with PQ as diameter passes through the vertex O. So ?POQ=90?POQ = 90^{\circ} mOP?mOQ=1m_{OP} ? m_{OQ} = -1 2t12t12×2t22t22=1t1t2=1\frac{2t_{1}}{2t^{2}_{1}}\times \frac{2t_{2}}{2t^{2}_{2}} = -1\,\, \Rightarrow t_{1}t_{2} = -1 Now Area of ?OPQ?OPQ will be 12100 12t122t1 12t222t2=32\frac{1}{2}\begin{vmatrix}1&0&0\\\ 1&2t^{2}_{1}&2t_{1}\\\ 1&2t^{2}_{2}&2t_{2}\end{vmatrix} = 3\sqrt{2} ?4t1t2(t1t2)=62t1t2=32? 4|t_{1} t_{2} \left(t_{1} - t_{2}\right)| = 6\sqrt{2} \Rightarrow \left|t_{1}-t_{2}\right| = \frac{3}{\sqrt{2}} t1+1t1=32\Rightarrow t_{1}+\frac{1}{t_{1}} = \frac{3}{\sqrt{2}} 2t123t1+2=0\Rightarrow \sqrt{2} t^{2}_{1} - 3t_{1} +\sqrt{2} = 0 (2t11)(t12)=0\Rightarrow \left(\sqrt{2}t_{1}-1\right)\left(t_{1}-\sqrt{2}\right) = 0 t1=12,2\Rightarrow t_{1} = \frac{1}{\sqrt{2}}, \sqrt{2} ?? Coordinates of P can be (4,22),(1,2)\left(4, 2 \sqrt{2} \right), \left(1, \sqrt{2} \right)