Solveeit Logo

Question

Mathematics Question on Triangles

Let P(α,β,γ)P(\alpha, \beta, \gamma) be the image of the point Q(3,3,1)Q(3, -3, 1) in the line x01=y31=z11\frac{x - 0}{1} = \frac{y - 3}{1} = \frac{z - 1}{-1}and RR be the point (2,5,1)(2, 5, -1). If the area of the triangle PQRPQR is λ\lambda and λ2=14K\lambda^2 = 14K, then KK is equal to:

A

36

B

72

C

18

D

81

Answer

81

Explanation

Solution

The coordinates of QQ are (3,3,1)(3, -3, 1) and RR is at (2,5,1)(2, 5, -1).

Step 1: Calculating RQRQ:

RQ=(23)2+(5+3)2+(11)2=1+64+4=69RQ = \sqrt{(2 - 3)^2 + (5 + 3)^2 + (-1 - 1)^2} = \sqrt{1 + 64 + 4} = \sqrt{69}

Step 2: Representing RQ\vec{RQ}:

RQ=i^+8j^2k^\vec{RQ} = -\hat{i} + 8\hat{j} - 2\hat{k}

Step 3: Representing RS\vec{RS}:

RS=i^+j^k^\vec{RS} = \hat{i} + \hat{j} - \hat{k}

Step 4: Finding cosine of the angle θ\theta between vectors RQ\vec{RQ} and RS\vec{RS}:

cosθ=RQ×RSRQRS\cos \theta = \frac{\vec{RQ} \times \vec{RS}}{|\vec{RQ}||\vec{RS}|}

=(1×1)+(8×1)+(2×1)69×3=1+8+269×3=9323= \frac{(-1 \times 1) + (8 \times 1) + (-2 \times -1)}{\sqrt{69} \times \sqrt{3}} = \frac{-1 + 8 + 2}{\sqrt{69} \times \sqrt{3}} = \frac{9}{3\sqrt{23}}

Step 5: Using sine of the angle:

sinθ=1cos2θ=2369\sin \theta = \sqrt{1 - \cos^2 \theta} = \frac{\sqrt{23}}{\sqrt{69}}

Step 6: Finding area of triangle PQRPQR:

Area=12×RQ×RS×sinθ=12×69×3×2369=3×232\text{Area} = \frac{1}{2} \times |\vec{RQ} \times \vec{RS}| \times \sin \theta = \frac{1}{2} \times \sqrt{69} \times \sqrt{3} \times \frac{\sqrt{23}}{\sqrt{69}} = \frac{\sqrt{3} \times \sqrt{23}}{2}

Step 7: Given λ2=14K\lambda^2 = 14K:

λ2=81.14=14K    K=81\lambda^2 = 81.14 = 14K \implies K = 81