Solveeit Logo

Question

Mathematics Question on 3D Geometry

Let P(α,β,γ)P(\alpha, \beta, \gamma) be the image of the point Q(1,6,4)Q(1, 6, 4) in the line x1=y12=z23.\frac{x}{1} = \frac{y - 1}{2} = \frac{z - 2}{3}. Then 2α+β+γ2\alpha + \beta + \gamma is equal to _______.

Answer

Let the line be represented by:
x=t,y=2t+1,z=3t+2.x = t, \quad y = 2t + 1, \quad z = 3t + 2.
Given the point Q(1,6,4)Q(1, 6, 4), we find the foot of the perpendicular AA by letting:
A(1714,4814,7914).A\left(\frac{17}{14}, \frac{48}{14}, \frac{79}{14}\right).
The direction vector of the line is:
b=i+2j+3k.\mathbf{b} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}.
To find the image point P(α,β,γ)P(\alpha, \beta, \gamma), we reflect QQ across AA using:
α=2014,β=1214,γ=10214.\alpha = \frac{20}{14}, \quad \beta = \frac{12}{14}, \quad \gamma = \frac{102}{14}.
Calculating 2α+β+γ2\alpha + \beta + \gamma:
2α+β+γ=15414=11.2\alpha + \beta + \gamma = \frac{154}{14} = 11.
Answer: 11.