Question
Mathematics Question on Coordinate Geometry
Let P(α,β) be a point on the parabola y2=4x. If P also lies on the chord of the parabola x2=8y whose midpoint is (1,45), then (α−28)(β−8) is equal to ______.
Step 1. The equation of the parabola is x2=8y
Step 2. The chord with midpoint (x1,y1) has the equation T=S1:
xx1−4(y+y1)=x12−8y1
Substituting (x1,y1)=(1,45):
x−4(y+45)=1−8⋅45=−9
x−4y=−4
Step 3. Since P(α,β) lies on this chord and also on the parabola y=4x2, we have:
α−4β=−4
β2=4α
Step 4. Solve equations (ii) and (iii):
Substitute α=4β2 from (iii) into (ii):
4β2−4β=−4
β2−16β+16=0
(β−8)2=48
β=8±43
β=8±43
Step 5. Substitute β=8±43 back into equation (ii) to find α:
For β=8+43:
For β=8−43:
α=4(8−43)−4=28−163
Step 6. Therefore, the possible points (α,β) are:
(α,β)=(28+163,8+43) and (28−163,8−43)
Step 7. Calculate (α−28)(β−8):
(α−28)(β−8)=(±163)(±43)=16⋅4⋅3=192
Thus, (α−28)(β−8)=192.
The Correct Answer is: 192