Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

Let P(α,β)P(\alpha, \beta) be a point on the parabola y2=4xy^2 = 4x. If PP also lies on the chord of the parabola x2=8yx^2 = 8y whose midpoint is (1,54)\left( 1, \frac{5}{4} \right), then (α28)(β8)(\alpha - 28)(\beta - 8) is equal to ______.

Answer

Step 1. The equation of the parabola is x2=8yx^2 = 8y

Step 2. The chord with midpoint (x1,y1)(x_1, y_1) has the equation T=S1T = S_1:
xx14(y+y1)=x128y1x x_1 - 4(y + y_1) = x_1^2 - 8y_1
Substituting (x1,y1)=(1,54)(x_1, y_1) = (1, \frac{5}{4}):
x4(y+54)=1854=9x - 4 \left( y + \frac{5}{4} \right) = 1 - 8 \cdot \frac{5}{4} = -9

x4y=4x - 4y = -4

Step 3. Since P(α,β)P(\alpha, \beta) lies on this chord and also on the parabola y=x24y = \frac{x^2}{4}, we have:
α4β=4\alpha - 4\beta = -4
β2=4α\beta^2 = 4\alpha

Step 4. Solve equations (ii) and (iii):
Substitute α=β24\alpha = \frac{\beta^2}{4} from (iii) into (ii):
β244β=4\frac{\beta^2}{4} - 4\beta = -4
β216β+16=0\beta^2 - 16\beta + 16 = 0
(β8)2=48(\beta - 8)^2 = 48
β=8±43\beta = 8 \pm 4\sqrt{3}
β=8±43\beta = 8 \pm 4\sqrt{3}

Step 5. Substitute β=8±43\beta = 8 \pm 4\sqrt{3} back into equation (ii) to find α\alpha:
For β=8+43\beta = 8 + 4\sqrt{3}:
For β=843\beta = 8 - 4\sqrt{3}:
α=4(843)4=28163\alpha = 4(8 - 4\sqrt{3}) - 4 = 28 - 16\sqrt{3}

Step 6. Therefore, the possible points (α,β)( \alpha, \beta ) are:
(α,β)=(28+163,8+43) and (28163,843)( \alpha, \beta ) = (28 + 16\sqrt{3}, 8 + 4\sqrt{3}) \text{ and } (28 - 16\sqrt{3}, 8 - 4\sqrt{3})

Step 7. Calculate (α28)(β8)( \alpha - 28 )( \beta - 8 ):
(α28)(β8)=(±163)(±43)=1643=192( \alpha - 28 )( \beta - 8 ) = (\pm 16\sqrt{3})(\pm 4\sqrt{3}) = 16 \cdot 4 \cdot 3 = 192
Thus, (α28)(β8)=192( \alpha - 28 )( \beta - 8 ) = 192.

The Correct Answer is: 192