Solveeit Logo

Question

Question: Let P (a sec q, b tan q) and Q (a sec f, b tan f) where q + f = p/2, be two points on the hyperbola...

Let P (a sec q, b tan q) and Q (a sec f, b tan f) where

q + f = p/2, be two points on the hyperbola x2/a2 – y2/b2 = 1. If (h, k) is the point of intersection of normals at P and Q, then k is equal to –

A

a2+b2a\frac{a^{2} + b^{2}}{a}

B

[a2+b2a]\left\lbrack \frac{a^{2} + b^{2}}{a} \right\rbrack

C

a2+b2b\frac{a^{2} + b^{2}}{b}

D

[a2+b2b]\left\lbrack \frac{a^{2} + b^{2}}{b} \right\rbrack

Answer

[a2+b2b]\left\lbrack \frac{a^{2} + b^{2}}{b} \right\rbrack

Explanation

Solution

Equation of the tangent at P (a sec q, b tan q) is

xa\frac{x}{a}sec q – ya\frac{y}{a} tan q = 1.

Therefore equation of the normal at P is

y – b tan q = –ab\frac{a}{b} sin q (x – a sec q)

Ž ax + b cosec q y = (a2 + b2) sec q …(1)

Similarly the equation of the normal at

Q (a sec f, b sec f) is

ax + b cosec f y = (a2 + b2) sec f … (2)

Subtracting (2) from (1) we get y = a2+b2b\frac{a^{2} + b^{2}}{b}.

secθsecφcosecθcosecφ\frac{\sec\theta - \sec\varphi}{\cos ec\theta - \cos ec\varphi}

So that k = y = a2+b2b\frac{a^{2} + b^{2}}{b}

secθsec(π/2θ)cosecθcosec(π/2θ)\frac{\sec\theta - \sec(\pi/2 - \theta)}{\cos ec\theta - \cos ec(\pi/2 - \theta)}

[Q q + f = p/2]

= a2+b2b\frac{a^{2} + b^{2}}{b} secθcosecθcosecθsecθ\frac{\sec\theta - \cos ec\theta}{\cos ec\theta - \sec\theta} = – [a2+b2b]\left\lbrack \frac{a^{2} + b^{2}}{b} \right\rbrack.