Solveeit Logo

Question

Question: Let P (a secθ, b tanθ) and Q (a secφ b tanφ) where θ+ φ = P/2, be two points on the hyperbola \(\fra...

Let P (a secθ, b tanθ) and Q (a secφ b tanφ) where θ+ φ = P/2, be two points on the hyperbola x2a2y2b2=1\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1. If (h, k) is the point of intersection of the normals at P and Q, then k is equal to

A

a2+b2a\frac{a^{2} + b^{2}}{a}

B

(a2+b2a)- \left( \frac{a^{2} + b^{2}}{a} \right)

C

a2+b2b\frac{a^{2} + b^{2}}{b}

D

(a2+b2b)- \left( \frac{a^{2} + b^{2}}{b} \right)

Answer

(a2+b2b)- \left( \frac{a^{2} + b^{2}}{b} \right)

Explanation

Solution

Normals at θ, φ where φ π2\frac{\pi}{2} - θ pass through (h, k)

∴ ah cosθ + bk cotθ = a2 + b2

and ah sinθ + bk tanθ = a2 + b2

Eliminating h, we get k = (a2+b2b)- \left( \frac{a^{2} + b^{2}}{b} \right).