Solveeit Logo

Question

Mathematics Question on Determinants

Let P=[aij]P=[a_{ij}] be a 3×33\times3 matrix and let Q=[bij]Q=[b_{ij}] where bij=2i+jaijb_{ij}=2^{i+j} a_{ij} for 1i,j1 \le i, j \le .If the determinant of PP is 22, then the determinant of the matrix QQ is

A

2102^{10}

B

2112^{11}

C

2122^{12}

D

2132^{13}

Answer

2132^{13}

Explanation

Solution

Plan It is a simple question on scalar multiplication, i.e
\begin{array}|ka_1&ka_2&ka_3\\\b_1&b_2&b_3\\\c_1&c_2&c_3\\\\\end{array}=\begin{array}|a_1&a_2&a_3\\\b_1&b_2&b_3\\\c_1&c_2&c_3\\\\\end{array}

Description of Situation Construction of matrix,
I.e. if a=[aij]3×3a11a12a13\a21a22a23\a31a32a33a=[a_{ij}]_{3\times3}\begin{array}|a_{11}&a_{12}&a_{13}\\\a_{21}&a_{22}&a_{23}\\\a_{31}&a_{32}&a_{33}\end{array}

Here, P[aij]3×3a11a12a13\a21a22a23\a31a32a33P[a_{ij}]_{3\times3}\begin{array}|a_{11}&a_{12}&a_{13}\\\a_{21}&a_{22}&a_{23}\\\a_{31}&a_{32}&a_{33}\\\\\end{array}

Q[bij]3×3b11b12b13\b21b22b23\b31b32b33Q[b_{ij}]_{3\times3}\begin{array}|b_{11}&b_{12}&b_{13}\\\b_{21}&b_{22}&b_{23}\\\b_{31}&b_{32}&b_{33}\\\\\end{array}

where, b_{ij}=2^{i+j}a_{ij}

Q=4a118a1216a13\8a2116a2232a23\16a3132a3264a33\therefore | Q |=\begin{array}|4 a_{11}&8 a_{12}&16 a_{13}\\\8 a_{21}&16 a_{22}&32 a_{23}\\\16 a_{31}&32 a_{32}&64 a_{33}\\\\\end{array}

=4×8×16=a11a12a13\2a212a222a23\4a314a324a33=4\times8\times16=\begin{array}| a_{11}&a_{12}&a_{13}\\\2 a_{21}&2 a_{22}&2 a_{23}\\\4 a_{31}&4 a_{32}&4 a_{33}\\\\\end{array}

=29×2×4=a11a12a13\a21a22a23\a31a32a33=212.2=213=2^9\times 2\times 4=\begin{array}| a_{11}&a_{12}&a_{13}\\\a_{21}&a_{22}&a_{23}\\\a_{31}&a_{32}&a_{33}\\\\\end{array}=2^{12}.2=2^{13}