Solveeit Logo

Question

Mathematics Question on Conic sections

Let P(6,3) be a point on the hyperbola x2a2y2b2=1.\frac{x^2}{a^2}-\frac{y^2}{b^2}=1. If the norm al at the point P intersects the X -axis at (9, 0), then the eccentricity of the hyperbola is

A

(a)52(a)\sqrt\frac{5}{2}

B

(b)32(b)\sqrt\frac{3}{2}

C

(c)2(c)\sqrt2

D

(d)3(d)\sqrt3

Answer

(b)32(b)\sqrt\frac{3}{2}

Explanation

Solution

Equation of normal to hyperbola at (x1,y1)(x_1,y_1) is
a2xx1+b2yy1=(a2+b2)\, \, \, \, \, \, \, \, \, \, \, \frac{a^2x}{x_1}+\frac{b^2y}{y_1}=(a^2+b^2)
At(6,3)=a2x6+b2y3=(a2+b2)\therefore\, \, \, \, At(6,3)=\frac{a^2x}{6}+\frac{b^2y}{3}=(a^2+b^2)
\because\, \, \, \, It passes through (9,0).a2.96=a2+b2(9, 0).\Rightarrow \frac{a^2.9}{6}=a^2+b^2
3a22a2=b2a2b2=2\Rightarrow\, \, \, \, \frac{3a^2}{2}-a^2=b^2 \Rightarrow \frac{a^2}{b^2}=2
e2=1+b2a2=1+12e=32\therefore \, \, \, \, \, \, \, \, \, e^2=1+\frac{b^2}{a^2}=1+\frac{1}{2} \Rightarrow e=\sqrt\frac{3}{2}