Solveeit Logo

Question

Mathematics Question on 3D Geometry

Let P(3,2,3)P(3, 2, 3), Q(4,6,2)Q(4, 6, 2), and R(7,3,2)R(7, 3, 2) be the vertices of PQR\triangle PQR. Then, the angle QPR\angle QPR is

A

π6\frac{\pi}{6}

B

cos1(718)\cos^{-1} \left( \frac{7}{18} \right)

C

cos1(118)\cos^{-1} \left( \frac{1}{18} \right)

D

π3\frac{\pi}{3}

Answer

π3\frac{\pi}{3}

Explanation

Solution

Solution: To find the angle ∠QPR, we calculate the direction ratios of PR and PQ.

Step 1. Direction Ratio of PR:
PR = (7 − 3, 3 − 2, 2 − 3) = (4, 1, −1)

Step 2. Direction Ratio of PQ:
PQ = (4 − 3, 6 − 2, 2 − 3) = (1, 4, −1)

Step 3. Calculating cosθ:
cosθ=41+14+(1)(1)1818=4+4+118=918=12\cosθ = \frac{4·1 + 1·4 + (−1)·(−1)}{\sqrt{18}·\sqrt{18}} = \frac{4 + 4 + 1}{18} = \frac{9}{18} = \frac{1}{2}
Step 4. Therefore:

θ=cos1(12)=π3θ = \cos⁻¹\left(\frac{1}{2}\right) = \frac{π}{3}

The Correct Answer is:π3\frac{π}{3}