Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let P(–2, –1, 1) and Q(56/17, 43/17, 111/17) be the vertices of the rhombus PRQS. If the direction ratios of the diagonal RS are α,1,β,α, –1, β, where both αα and ββ are integers of minimum absolute values, then α2+β2α^2 + β^2 is equal to ___________.

Answer

RS(α,1,β)RS≡(α,−1,β)

DR  of  PQDR \space of\space PQ(5617+2,4317+1,111171)(\frac{56}{17}+2,\frac{43}{17}+1,\frac{111}{17}−1)
(9017,6017,9417)(\frac{90}{17},\frac{60}{17},\frac{94}{17})

9017α+6017(1)+9417β=0\frac{90}{17}α+\frac{60}{17}(−1)+\frac{94}{17}β=0

90α+94β=6090α+94β=60
β=6090α94β=\frac{60−90α}{94}

β=30(23α)94β=\frac{30(2−3α)}{94}

β=30(3α2)94β=−30\frac{(3α−2)}{94}

β=1547(3α2)β=−\frac{15}{47}(3α−2)

β15=3α247⇒\frac{β}{-15}=\frac{3α−2}{47}

β=15,α=15⇒β=−15,α=−15

α2+β2=225+225α^2+β^2=225+225

=450=450