Solveeit Logo

Question

Question: Let \(\overset{\rightarrow}{u}\), \(\overset{\rightarrow}{v}\)and \(\overset{\rightarrow}{w}\) are v...

Let u\overset{\rightarrow}{u}, v\overset{\rightarrow}{v}and w\overset{\rightarrow}{w} are vectors such that u\overset{\rightarrow}{u}+ v\overset{\rightarrow}{v}+w\overset{\rightarrow}{w}=0\overset{\rightarrow}{0}. If |u\overset{\rightarrow}{u}|= 3, |v\overset{\rightarrow}{v}|= 4 and |w\overset{\rightarrow}{w}|= 5, then the value of

u\overset{\rightarrow}{u}.v\overset{\rightarrow}{v}+v\overset{\rightarrow}{v} .w\overset{\rightarrow}{w}+ w\overset{\rightarrow}{w}.u\overset{\rightarrow}{u}is-

A

–25

B

–27

C

28

D

25

Answer

–25

Explanation

Solution

Given,

u\overset{\rightarrow}{u}+ v\overset{\rightarrow}{v} + w\overset{\rightarrow}{w}= 0\overset{\rightarrow}{0}

If |u\overset{\rightarrow}{u}|= 3; | v\overset{\rightarrow}{v}| = 4 and |w\overset{\rightarrow}{w}| = 5

Means u\overset{\rightarrow}{u}, v\overset{\rightarrow}{v} and w\overset{\rightarrow}{w}form a right angled triangle, right angled at the angle between u\overset{\rightarrow}{u}and v\overset{\rightarrow}{v}

\ u\overset{\rightarrow}{u}. v\overset{\rightarrow}{v}= 0;

Further u\overset{\rightarrow}{u}. w\overset{\rightarrow}{w}=u\overset{\rightarrow}{u} |w\overset{\rightarrow}{w}|cos q,

but, cos q = –35\frac{3}{5}

u\overset{\rightarrow}{u}. w\overset{\rightarrow}{w} = (3) (5) (35)\left( - \frac{3}{5} \right)= – 9

v\overset{\rightarrow}{v}. w\overset{\rightarrow}{w}=v\overset{\rightarrow}{v} |w\overset{\rightarrow}{w}|cos f

but cos f = –45\frac{4}{5}

v\overset{\rightarrow}{v}. w\overset{\rightarrow}{w} = (4) (5) (45)\left( - \frac{4}{5} \right)= – 16

̃u\overset{\rightarrow}{u} . v\overset{\rightarrow}{v}+v\overset{\rightarrow}{v}.w\overset{\rightarrow}{w}+u\overset{\rightarrow}{u}. w\overset{\rightarrow}{w}= 0 – 16 – 9 = – 25