Question
Question: Let \(\overset{\rightarrow}{u}\), \(\overset{\rightarrow}{v}\)and \(\overset{\rightarrow}{w}\) are v...
Let u→, v→and w→ are vectors such that u→+ v→+w→=0→. If |u→|= 3, |v→|= 4 and |w→|= 5, then the value of
u→.v→+v→ .w→+ w→.u→is-
A
–25
B
–27
C
28
D
25
Answer
–25
Explanation
Solution
Given,
u→+ v→ + w→= 0→
If |u→|= 3; | v→| = 4 and |w→| = 5
Means u→, v→ and w→form a right angled triangle, right angled at the angle between u→and v→
\ u→. v→= 0;
Further u→. w→=u→ |w→|cos q,
but, cos q = –53
u→. w→ = (3) (5) (−53)= – 9
v→. w→=v→ |w→|cos f
but cos f = –54
v→. w→ = (4) (5) (−54)= – 16
̃u→ . v→+v→.w→+u→. w→= 0 – 16 – 9 = – 25