Question
Question: Let \(\overset{\rightarrow}{r}\) be a unit vector satisfying \(\overset{\rightarrow}{r}\)× \(\overse...
Let r→ be a unit vector satisfying r→× a→ = b→, where
|a→| = 3 and |b→| = 2, Then :
A
r→ = 32 (a→+a→×b→)
B
r→= 31 (a→× b→± a→ )
C
r→ = (a→ × b→± a )
D
r→ = (b→±a→×b→)
Answer
r→= 31 (a→× b→± a→ )
Explanation
Solution
r→ × a→ = b→ ̃ a→× (r→×a→) = a→ × b→
(a→.a→)r→ – (a→.r→)a→ = a→× b→
3r→ = (a→.r→)a→ + (a→× b→) …(i)
Now, |r→ × a→|2 = |b→|2 = 2
or, 2 = (r→×a→) . (r→×a→)
= r→.r→a→.r→a→.r→a→.a→
̃ r→.a→ = ± 1. …(ii)
\ r→ = 31 (a→ × b→ ± a→)
from (i) & (ii)