Solveeit Logo

Question

Question: Let \(\overset{\rightarrow}{r}\) be a unit vector satisfying \(\overset{\rightarrow}{r}\)× \(\overse...

Let r\overset{\rightarrow}{r} be a unit vector satisfying r\overset{\rightarrow}{r}× a\overset{\rightarrow}{a} = b\overset{\rightarrow}{b}, where

|a\overset{\rightarrow}{a}| = 3\sqrt{3} and |b\overset{\rightarrow}{b}| = 2\sqrt{2}, Then :

A

r\overset{\rightarrow}{r} = 23\frac{2}{3} (a\overset{\rightarrow}{a}+a\overset{\rightarrow}{a}×b\overset{\rightarrow}{b})

B

r\overset{\rightarrow}{r}= 13\frac{1}{3} (a\overset{\rightarrow}{a}× b\overset{\rightarrow}{b}± a\overset{\rightarrow}{a} )

C

r\overset{\rightarrow}{r} = (a\overset{\rightarrow}{a} × b\overset{\rightarrow}{b}± a )

D

r\overset{\rightarrow}{r} = (b\overset{\rightarrow}{b}±a\overset{\rightarrow}{a}×b\overset{\rightarrow}{b})

Answer

r\overset{\rightarrow}{r}= 13\frac{1}{3} (a\overset{\rightarrow}{a}× b\overset{\rightarrow}{b}± a\overset{\rightarrow}{a} )

Explanation

Solution

r\overset{\rightarrow}{r} × a\overset{\rightarrow}{a} = b\overset{\rightarrow}{b} ̃ a\overset{\rightarrow}{a}× (r\overset{\rightarrow}{r}×a\overset{\rightarrow}{a}) = a\overset{\rightarrow}{a} × b\overset{\rightarrow}{b}

(a\overset{\rightarrow}{a}.a\overset{\rightarrow}{a})r\overset{\rightarrow}{r} – (a\overset{\rightarrow}{a}.r\overset{\rightarrow}{r})a\overset{\rightarrow}{a} = a\overset{\rightarrow}{a}× b\overset{\rightarrow}{b}

3r\overset{\rightarrow}{r} = (a\overset{\rightarrow}{a}.r\overset{\rightarrow}{r})a\overset{\rightarrow}{a} + (a\overset{\rightarrow}{a}× b\overset{\rightarrow}{b}) …(i)

Now, |r\overset{\rightarrow}{r} × a\overset{\rightarrow}{a}|2 = |b\overset{\rightarrow}{b}|2 = 2

or, 2 = (r\overset{\rightarrow}{r}×a\overset{\rightarrow}{a}) . (r\overset{\rightarrow}{r}×a\overset{\rightarrow}{a})

= r.ra.ra.ra.a\left| \begin{matrix} \overset{\rightarrow}{r}.\overset{\rightarrow}{r} & \overset{\rightarrow}{a}.\overset{\rightarrow}{r} \\ \overset{\rightarrow}{a}.\overset{\rightarrow}{r} & \overset{\rightarrow}{a}.\overset{\rightarrow}{a} \end{matrix} \right|

̃ r\overset{\rightarrow}{r}.a\overset{\rightarrow}{a} = ± 1. …(ii)

\ r\overset{\rightarrow}{r} = 13\frac{1}{3} (a\overset{\rightarrow}{a} × b\overset{\rightarrow}{b} ± a\overset{\rightarrow}{a})

from (i) & (ii)