Solveeit Logo

Question

Question: Let \(\overset{\rightarrow}{F}\) be the force acting on a particle having position vector \(\overset...

Let F\overset{\rightarrow}{F} be the force acting on a particle having position vector r\overset{\rightarrow}{r} and T\overset{\rightarrow}{T} be the torque of this force about the origin. Then:

A

r.T=0andF.T=0\overset{\rightarrow}{r}.\overset{\rightarrow}{T} = 0and\overset{\rightarrow}{F}.\overset{\rightarrow}{T} = 0

B

r.T=0andF.T0\overset{\rightarrow}{r}.\overset{\rightarrow}{T} = 0and\overset{\rightarrow}{F}.\overset{\rightarrow}{T} \neq 0

C

r.T0andF.T=0\overset{\rightarrow}{r}.\overset{\rightarrow}{T} \neq 0and\overset{\rightarrow}{F}.\overset{\rightarrow}{T} = 0

D

. r.T0andF.T0\overset{\rightarrow}{r}.\overset{\rightarrow}{T} \neq 0and\overset{\rightarrow}{F}.\overset{\rightarrow}{T} \neq 0

Answer

r.T=0andF.T=0\overset{\rightarrow}{r}.\overset{\rightarrow}{T} = 0and\overset{\rightarrow}{F}.\overset{\rightarrow}{T} = 0

Explanation

Solution

T=r×F\overset{\rightarrow}{T} = \overset{\rightarrow}{r} \times \overset{\rightarrow}{F} is T\overset{\rightarrow}{T} to both r\overset{\rightarrow}{r} and F\overset{\rightarrow}{F} so T\overset{\rightarrow}{T} and F.T=0\overset{\rightarrow}{F}.\overset{\rightarrow}{T} = 0