Solveeit Logo

Question

Question: Let \(\overset{\rightarrow}{C} = \overset{\rightarrow}{A} + \overset{\rightarrow}{B}\) then...

Let C=A+B\overset{\rightarrow}{C} = \overset{\rightarrow}{A} + \overset{\rightarrow}{B} then

A

C|\overset{\rightarrow}{C|} is always greater then A|\overset{\rightarrow}{A}|

B

It is possible to have C<A|\overset{\rightarrow}{C}| < |\overset{\rightarrow}{A}| and C<B|\overset{\rightarrow}{C}| < |\overset{\rightarrow}{B}|

C

C is always equal to A + B

D

C is never equal to A + B

Answer

It is possible to have C<A|\overset{\rightarrow}{C}| < |\overset{\rightarrow}{A}| and C<B|\overset{\rightarrow}{C}| < |\overset{\rightarrow}{B}|

Explanation

Solution

C+A=B\overrightarrow{C} + \overrightarrow{A} = \overrightarrow{B}.

The value of C lies between ABA - B and A+BA + B

C6mu<6muA6mu6muor6mu6muC6mu<6muB|\overrightarrow{C}|\mspace{6mu} < \mspace{6mu}|\overrightarrow{A}|\mspace{6mu}\mspace{6mu}\text{or}\mspace{6mu}\mspace{6mu}|\overrightarrow{C}|\mspace{6mu} < \mspace{6mu}|\overrightarrow{B}|