Solveeit Logo

Question

Question: Let \(\overset{\rightarrow}{A} = \widehat{i}A\cos\theta + \widehat{j}A\sin\theta\) be any vector. An...

Let A=i^Acosθ+j^Asinθ\overset{\rightarrow}{A} = \widehat{i}A\cos\theta + \widehat{j}A\sin\theta be any vector. Another vector B\overset{\rightarrow}{B} which is normal to A is

A

i^Bcosθ+jBsinθ\widehat{i}B\cos\theta + jB\sin\theta

B

i^Bsinθ+jBcosθ\widehat{i}B\sin\theta + jB\cos\theta

C

i^BsinθjBcosθ\widehat{i}B\sin\theta - jB\cos\theta

D

i^BcosθjBsinθ\widehat{i}B\cos\theta - jB\sin\theta

Answer

i^BsinθjBcosθ\widehat{i}B\sin\theta - jB\cos\theta

Explanation

Solution

Dot product of two perpendicular vector will be zero.