Solveeit Logo

Question

Question: Let \(\overset{\rightarrow}{A} = i + j + k\), \(\overset{\rightarrow}{B} = i,\overset{\rightarrow}{C...

Let A=i+j+k\overset{\rightarrow}{A} = i + j + k, B=i,C=C1i+C2j+C3k\overset{\rightarrow}{B} = i,\overset{\rightarrow}{C} = C_{1}i + C_{2}j + C_{3}k. If C2=1C_{2} = - 1, and C3=1C_{3} = 1, then to make three vectors coplanar

A

C1=0C_{1} = 0

B

C1=1C_{1} = 1

C

C1=2C_{1} = 2

D

No value of C1C_{1} can be found

Answer

No value of C1C_{1} can be found

Explanation

Solution

To make three vectors coplanar [ABC]=0\lbrack\overset{\rightarrow}{A}\overset{\rightarrow}{B}\overset{\rightarrow}{C}\rbrack = 0

The value of [ABC]\lbrack\overrightarrow{A}\overrightarrow{B}\overrightarrow{C}\rbrack is independent of C1C_{1},

hence no value of C1C_{1} can be found.