Solveeit Logo

Question

Question: Let \(\overset{\to }{\mathop{a}}\,=2\hat{i}-\hat{j}+\hat{k};\overset{\to }{\mathop{b}}\,=\hat{i}+2\h...

Let a=2i^j^+k^;b=i^+2j^k^\overset{\to }{\mathop{a}}\,=2\hat{i}-\hat{j}+\hat{k};\overset{\to }{\mathop{b}}\,=\hat{i}+2\hat{j}-\hat{k}and c=i^+j^2k^\overset{\to }{\mathop{c}}\,=\hat{i}+\hat{j}-2\hat{k} be three vectors. A vector in the plane of b and c whose projection on a is of magnitude 23\sqrt{\dfrac{2}{3}} is
a)2i^+2j^3k^2\hat{i}+2\hat{j}-3\hat{k}
b) 2i^+3j^+3k^2\hat{i}+3\hat{j}+3\hat{k}
c) 2i^j^+5k^2\hat{i}-\hat{j}+5\hat{k}
d) 2i^+j^+5k^2\hat{i}+\hat{j}+5\hat{k}

Explanation

Solution

We have three vectors given as: a=2i^j^+k^;b=i^+2j^k^\overset{\to }{\mathop{a}}\,=2\hat{i}-\hat{j}+\hat{k};\overset{\to }{\mathop{b}}\,=\hat{i}+2\hat{j}-\hat{k}and c=i^+j^2k^\overset{\to }{\mathop{c}}\,=\hat{i}+\hat{j}-2\hat{k}. Let us assume that r=b+λc\overset{\to }{\mathop{r}}\,=\overset{\to }{\mathop{b}}\,+\lambda \overset{\to }{\mathop{c}}\, is the vector in the plane of b and c. Find the vector r and then find the projection of r\overset{\to }{\mathop{r}}\,on a\overset{\to }{\mathop{a}}\, by using the projection formula as: r.aa\dfrac{\overset{\to }{\mathop{r}}\,.\overset{\to }{\mathop{a}}\,}{\left| \overset{\to }{\mathop{a}}\, \right|}. We know that the projection of r\overset{\to }{\mathop{r}}\,on a\overset{\to }{\mathop{a}}\, is 23\sqrt{\dfrac{2}{3}}. So, find the value of λ\lambda using this relation and then find the required vector r\overset{\to }{\mathop{r}}\,.

Complete step-by-step solution:
As we have assumed that: r=b+λc......(1)\overset{\to }{\mathop{r}}\,=\overset{\to }{\mathop{b}}\,+\lambda \overset{\to }{\mathop{c}}\,......(1)
Now, put value of b=i^+2j^k^\overset{\to }{\mathop{b}}\,=\hat{i}+2\hat{j}-\hat{k} and c=i^+j^2k^\overset{\to }{\mathop{c}}\,=\hat{i}+\hat{j}-2\hat{k} in equation (1), we get:
r=(i^+2j^k^)+λ(i^+j^2k^) =(1+λ)i^+(2+λ)j^+(12λ)k^......(2)\begin{aligned} & \overset{\to }{\mathop{r}}\,=\left( \hat{i}+2\hat{j}-\hat{k} \right)+\lambda \left( \hat{i}+\hat{j}-2\hat{k} \right) \\\ & =\left( 1+\lambda \right)\hat{i}+\left( 2+\lambda \right)\hat{j}+\left( -1-2\lambda \right)\hat{k}......(2) \end{aligned}
Now, we need to find the projection of r\overset{\to }{\mathop{r}}\,on a\overset{\to }{\mathop{a}}\, by using the formula: r.aa\dfrac{\overset{\to }{\mathop{r}}\,.\overset{\to }{\mathop{a}}\,}{\left| \overset{\to }{\mathop{a}}\, \right|}
Firstly, find r.a\overset{\to }{\mathop{r}}\,.\overset{\to }{\mathop{a}}\,, we get:

& \overset{\to }{\mathop{r}}\,.\overset{\to }{\mathop{a}}\,=\left\\{ \left( 1+\lambda \right)\hat{i}+\left( 2+\lambda \right)\hat{j}+\left( -1-2\lambda \right)\hat{k} \right\\}.\left\\{ 2\hat{i}-\hat{j}+\hat{k} \right\\} \\\ & =2\left( 1+\lambda \right)-1\left( 2+\lambda \right)+1\left( -1-2\lambda \right) \\\ & =2+2\lambda -2-\lambda -1-2\lambda \\\ & =-1-\lambda ......(3) \end{aligned}$$ Now, we need to find the magnitude of $\overset{\to }{\mathop{a}}\,$ We know that: $$\left| \overset{\to }{\mathop{a}}\, \right|=\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}$$ So, for $\overset{\to }{\mathop{a}}\,=2\hat{i}-\hat{j}+\hat{k}$ we get: $\begin{aligned} & \left| \overset{\to }{\mathop{a}}\, \right|=\sqrt{{{\left( 2 \right)}^{2}}+{{\left( -1 \right)}^{2}}+{{\left( 1 \right)}^{2}}} \\\ & =\sqrt{4+1+1} \\\ & =\sqrt{6}......(4) \end{aligned}$ Now, by using the projection formula: $\dfrac{\overset{\to }{\mathop{r}}\,.\overset{\to }{\mathop{a}}\,}{\left| \overset{\to }{\mathop{a}}\, \right|}$, we get: $\dfrac{\overset{\to }{\mathop{r}}\,.\overset{\to }{\mathop{a}}\,}{\left| \overset{\to }{\mathop{a}}\, \right|}=\dfrac{\left( -1-\lambda \right)}{\sqrt{6}}......(5)$ We know that the projection of $\overset{\to }{\mathop{r}}\,$on $\overset{\to }{\mathop{a}}\,$ is $\sqrt{\dfrac{2}{3}}$. So, we can wite equation (5): $\begin{aligned} & \dfrac{\left( -1-\lambda \right)}{\sqrt{6}}=\sqrt{\dfrac{2}{3}} \\\ & \left( -1-\lambda \right)=\pm 2 \\\ & -\lambda =3,-1 \\\ & \lambda =-3,1 \\\ \end{aligned}$ Now, put the value of $\lambda $in equation (2), we get: For $\lambda =-3$ $\begin{aligned} & \overset{\to }{\mathop{r}}\,=\left( 1-3 \right)\hat{i}+\left( 2-3 \right)\hat{j}+\left( -1+6 \right)\hat{k} \\\ & =-2\hat{i}-\hat{j}+5\hat{k} \end{aligned}$ For $\lambda =1$ $\begin{aligned} & \overset{\to }{\mathop{r}}\,=\left( 1+1 \right)\hat{i}+\left( 2+1 \right)\hat{j}+\left( -1-2 \right)\hat{k} \\\ & =2\hat{i}+3\hat{j}-3\hat{k} \end{aligned}$ **Hence, option (a) is the correct answer.** **Note:** The vector projection is of two types: Scalar projection that tells about the magnitude of the vector projection and the other is the Vector projection which says about itself and represents the unit vector. If the vector $\overset{\to }{\mathop{a}}\,$ is projected on vector $\overset{\to }{\mathop{b}}\,$ then Vector Projection formula is given below: $pro{{j}_{b}}a=\dfrac{\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,}{{{\left| \overset{\to }{\mathop{b}}\, \right|}^{2}}}\overset{\to }{\mathop{b}}\,$ The Scalar projection formula defines the length of given vector projection and is given below: $pro{{j}_{b}}a=\dfrac{\overset{\to }{\mathop{a}}\,.\overset{\to }{\mathop{b}}\,}{\overset{\to }{\mathop{a}}\,}$