Solveeit Logo

Question

Mathematics Question on Vectors

Let a=i^J^+2K^\overset{→}a = \hat{i}- \hat{J}+2\hat{K} and b\overset{→}b be a vector such that a×b=2i^k^\overset{→}a×\overset{→}b=2\hat{i}−\hat{k} and ab=3\overset{→}a⋅\overset{→}b=3. Then the projection of b\overset{→}b on the vector ab\overset{→}a-\overset{→}b is :

A

221\frac2{\sqrt{21}}

B

2372\sqrt{\frac3{7}}

C

2373\frac{2}3\sqrt{\frac7{3}}

D

23\frac2{3}

Answer

221\frac2{\sqrt{21}}

Explanation

Solution

a=i^J^+2K^\overset{→}a = \hat{i}- \hat{J}+2\hat{K}
a×b=2i^k^\overset{→}a×\overset{→}b=2\hat{i}−\hat{k}
ab=3\overset{→}a⋅\overset{→}b=3

a×b2+a.b2=a2.b2|\overset{→}a×\overset{→}b|^2 +|\overset{→}a.\overset{→}b|^2 = |\overset{→}a|^2.|\overset{→}b|^2

⇒ 5 + 9 = 6b2|\overset{→}b|^2m

|\overset{→}b|^2$$=\frac7{3}

ab=a2+b22a.b=73|\overset{→}a-\overset{→}b| = \sqrt{|\overset{→}a|^2+|\overset{→}b|^2}-2\overset{→}a.\overset{→}b = \sqrt{\frac7{3}}

Projection of b\overset{→}b on ab\overset{→}a-\overset{→}b is :b.(ab)ab\frac{\overset{→}b.(\overset{→}a-\overset{→}b)}{|\overset{→}a-\overset{→}b|}

=b.ab2ab\frac{\overset{→}b.\overset{→}a-|\overset{→}b|^2}{|\overset{→}a-\overset{→}b|}

=37373\frac{3-\frac7{3}}{\sqrt{\frac7{3}}}

=221\frac2{\sqrt{21}}