Solveeit Logo

Question

Question: Let $\overrightarrow{AB}=3\hat{i}+4\hat{k}$ and $\overrightarrow{AC}=5\hat{i}-2\hat{j}+4\hat{k}$. If...

Let AB=3i^+4k^\overrightarrow{AB}=3\hat{i}+4\hat{k} and AC=5i^2j^+4k^\overrightarrow{AC}=5\hat{i}-2\hat{j}+4\hat{k}. If the length of altitude from AA to the side BCBC of ABC\triangle ABC is PP then the greatest integer less than P2P^2 is equal to:

A

20

B

18

C

19

D

21

Answer

20

Explanation

Solution

  1. Calculate the vector representing side BC: BC=ACAB=(5i^2j^+4k^)(3i^+4k^)=2i^2j^\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB} = (5\hat{i} - 2\hat{j} + 4\hat{k}) - (3\hat{i} + 4\hat{k}) = 2\hat{i} - 2\hat{j}
  2. Calculate the square of the length of side BC: BC2=(2)2+(2)2+(0)2=4+4=8|\overrightarrow{BC}|^2 = (2)^2 + (-2)^2 + (0)^2 = 4 + 4 = 8
  3. Calculate the cross product of AB\overrightarrow{AB} and AC\overrightarrow{AC}: AB×AC=i^j^k^304524=i^(0(8))j^(1220)+k^(60)=8i^+8j^6k^\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 0 & 4 \\ 5 & -2 & 4 \end{vmatrix} = \hat{i}(0 - (-8)) - \hat{j}(12 - 20) + \hat{k}(-6 - 0) = 8\hat{i} + 8\hat{j} - 6\hat{k}
  4. Calculate the square of the magnitude of the cross product: AB×AC2=(8)2+(8)2+(6)2=64+64+36=164|\overrightarrow{AB} \times \overrightarrow{AC}|^2 = (8)^2 + (8)^2 + (-6)^2 = 64 + 64 + 36 = 164
  5. Relate the area of the triangle to the altitude: The area of ABC\triangle ABC is 12AB×AC\frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|. Also, Area =12×base×height=12BCP= \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} |\overrightarrow{BC}| P. Equating these gives: 12AB×AC=12BCP\frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} |\overrightarrow{BC}| P AB×AC=BCP|\overrightarrow{AB} \times \overrightarrow{AC}| = |\overrightarrow{BC}| P Squaring both sides: AB×AC2=BC2P2|\overrightarrow{AB} \times \overrightarrow{AC}|^2 = |\overrightarrow{BC}|^2 P^2
  6. Calculate P2P^2: P2=AB×AC2BC2=1648=412=20.5P^2 = \frac{|\overrightarrow{AB} \times \overrightarrow{AC}|^2}{|\overrightarrow{BC}|^2} = \frac{164}{8} = \frac{41}{2} = 20.5
  7. Find the greatest integer less than P2P^2: The greatest integer less than 20.520.5 is 20.5=20\lfloor 20.5 \rfloor = 20.