Solveeit Logo

Question

Question: Let \(\overrightarrow{a}\) and \(\overrightarrow{b}\) are two perpendicular unit vectors. If \(\over...

Let a\overrightarrow{a} and b\overrightarrow{b} are two perpendicular unit vectors. If c\overrightarrow{c} is another unit vector equally inclined at angle q to the vectors a\overrightarrow{a} and b\overrightarrow{b} , then the set of exhaustive values of q in [0, 2p] is

A

(0,π2)\left( 0,\frac{\pi}{2} \right)

B

[0,π4]\left\lbrack 0,\frac{\pi}{4} \right\rbrack

C

(π2,3π4)\left( \frac{\pi}{2},\frac{3\pi}{4} \right)

D

[π4,3π4]\left\lbrack \frac{\pi}{4},\frac{3\pi}{4} \right\rbrack

Answer

[π4,3π4]\left\lbrack \frac{\pi}{4},\frac{3\pi}{4} \right\rbrack

Explanation

Solution

Let c\overrightarrow{c}= l a\overrightarrow{a}+ mb\overrightarrow{b}+ n(a\overrightarrow{a}×b\overrightarrow{b}), then

a\overrightarrow{a}.c\overrightarrow{c}= l ̃ l = cos q

Similarly m = cos q

also, |c\overrightarrow{c}|2 = l2 + m2 + n2 |a\overrightarrow{a}×b\overrightarrow{b}|2

̃ 1 = 2l2 + n2 [a2b2(a.b)2|\overrightarrow{a}|^{2}|\overrightarrow{b}|^{2} - (\overrightarrow{a}.\overrightarrow{b})^{2}] = 2l2 + n2 [Q l = m]

\ v2 = 1 –2l2 = 1 – 2 cos2 q = –cos2q

Now n2 ³ 0 ̃ cos 2q £ 0 ̃ π4\frac{\pi}{4}£ q £ 3π4\frac{3\pi}{4}