Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let V\overrightarrow V be a vector field and f be a scalar point function, then curl (fV)(f\overrightarrow V) is equivalent to________.

A

(gradf)V+fdiv(V)(grad f) \cdot\overrightarrow V + fdiv(\overrightarrow V)

B

(gradf)×V+fcurl(V)(grad f)\times\overrightarrow V + fcurl(\overrightarrow V)

C

(gradf)(divV)+curl(curlV)(grad f)\cdot(div\overrightarrow V) + curl(curl\overrightarrow V)

D

grad[divV]fcurl(V)grad [div\overrightarrow V] - fcurl(\overrightarrow V)

Answer

(gradf)×V+fcurl(V)(grad f)\times\overrightarrow V + fcurl(\overrightarrow V)

Explanation

Solution

The correct answer is(B): (gradf)×V+fcurl(V)(grad f)\times\overrightarrow V + fcurl(\overrightarrow V)