Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let u,v,w\overrightarrow{u},\overrightarrow{v},\overrightarrow{w} be such that u=1,v=2,w=3|\overrightarrow{u}|=1,|\overrightarrow{v}|=2,|\overrightarrow{w} |=3 . If the projection v\overrightarrow{v} along u\overrightarrow{u} is equal to that of w\overrightarrow{w} along u\overrightarrow{u} and v\overrightarrow{v} and w\overrightarrow{w} are \bot to each other , then uv+w|\overrightarrow{u} -\overrightarrow{v} +\overrightarrow{w} | equals

A

14\sqrt{14}

B

7\sqrt{7}

C

2

D

14

Answer

14\sqrt{14}

Explanation

Solution

u=1,v=2,w=3\left|\vec{u}\right|=1, \left|\vec{v}\right|=2, \left|\vec{w}\right|=3. By the given condition, v.uu=w.vu\Rightarrow \frac{\vec{v}\,.\,\vec{u}}{\left|\vec{u}\right|}=\frac{\vec{w}\,.\,\vec{v}}{\left|\vec{u}\right|} v.u=w.u\Rightarrow \vec{v}\,.\,\vec{u}=\vec{w}\,.\,\vec{u} Also, v.w=0(vw)\vec{v}\,.\,\vec{w}=0\quad\left(\because \vec{v}\,\bot\,\vec{w}\right) Now uv+w2=u2+v2+w2\left|\vec{u}-v+\vec{w}\right|^{2}=\vec{u}^{2}+\vec{v}^{2}+\vec{w}^{2} 2u.v2v.w+2w.u-2\,\vec{u}\,.\,\vec{v}-2\,\vec{v}\,.\,\vec{w}+2\,\vec{w}\,.\,\vec{u} =1+4+92vw(vb=uw)=1+4+9-2\,\vec{v}\cdot\vec{w}\quad\left(\because \vec{v}\cdot\vec{b}=\vec{u}\cdot\vec{w}\right) =142(0)=14=14-2\left(0\right)=14 uv+w=14\therefore \left|\vec{u}-\vec{v}+\vec{w}\right|=\sqrt{14}