Solveeit Logo

Question

Question: Let \(\overrightarrow u \) be a vector coplanar with the vectors \(\overrightarrow a = 2\widehat i +...

Let u\overrightarrow u be a vector coplanar with the vectors a=2i^+3j^k^\overrightarrow a = 2\widehat i + 3\widehat j - \widehat k and b=j^+k^\overrightarrow b = \widehat j + \widehat k . If u\overrightarrow u is perpendicular to a\overrightarrow a and u.b=24\overrightarrow u .\overrightarrow b = 24 , then u2{\left| u \right|^2} is equal to
A. 256256
B. 8484
C. 336336
D. 315315

Explanation

Solution

At first, we need to assume u\overrightarrow u as a variable vector. Then, get an equation in terms of that variables by using the statement that u\overrightarrow u is a vector coplanar with the vectors a=2i^+3j^k^\overrightarrow a = 2\widehat i + 3\widehat j - \widehat k and b=j^+k^\overrightarrow b = \widehat j + \widehat k . Form the second equation by using the information thatu\overrightarrow u is perpendicular to a\overrightarrow a and the third equation by u.b=24\overrightarrow u .\overrightarrow b = 24 and solve these equations.

Complete step-by-step solution:
Here in this problem, we are given three coplanar vectors u,a=2i^+3j^k^ and b=j^+k^\overrightarrow u ,\overrightarrow a = 2\widehat i + 3\widehat j - \widehat k{\text{ and }}\overrightarrow b = \widehat j + \widehat k. We also know that u\overrightarrow u is perpendicular to a\overrightarrow a and u.b=24\overrightarrow u .\overrightarrow b = 24. Using this given information, we need to find the value of u2{\left| u \right|^2}
Let us assume that u=xi^+yj^+zk^\overrightarrow u = x\widehat i + y\widehat j + z\widehat k
We already know a=2i^+3j^k^\overrightarrow a = 2\widehat i + 3\widehat j - \widehat k and b=j^+k^\overrightarrow b = \widehat j + \widehat k
Now we know that it is coplanar with a,b\overrightarrow a ,\overrightarrow b . It means that the determinant formed by u,a,b\overrightarrow u ,\overrightarrow a ,\overrightarrow b is equal to zero.
\Rightarrow \left| {\begin{array}{*{20}{c}} x&y;&z; \\\ 2&3&{ - 1} \\\ 0&1&1 \end{array}} \right| = 0
The determinant can be solved as \left| {\begin{array}{*{20}{c}} a&b;&c; \\\ d&e;&f; \\\ g&h;&i; \end{array}} \right| = a\left( {ei - hf} \right) - b\left( {di - fg} \right) + c\left( {dh - eg} \right)
Therefore, we get:
x(3+1)y(2+0)+z(20)=04x2y+2z=0\Rightarrow x(3 + 1) - y(2 + 0) + z(2 - 0) = 0 \Rightarrow 4x - 2y + 2z = 0 (1) - - - - (1)
Now form the second equation by using the information that u\overrightarrow u is perpendicular to a\overrightarrow a
This statement implies that:
(xi^+yj^+zk^)(2i^+3j^k^)=0\Rightarrow (x\widehat i + y\widehat j + z\widehat k) \cdot (2\widehat i + 3\widehat j - \widehat k) = 0 , which is the dot or scalar product of vector u\overrightarrow u and a\overrightarrow a
Now let’s solve it to get:
2x+3yz=0\Rightarrow 2x + 3y - z = 0 (2) - - - - (2)
At last, we will use u.b=24\overrightarrow u .\overrightarrow b = 24
(xi^+yj^+zk^)(j^+k^)=24y+z=24\Rightarrow (x\widehat i + y\widehat j + z\widehat k) \cdot (\widehat j + \widehat k) = 24 \Rightarrow y + z = 24 (3) - - - - - (3)
Adding (2) and (3), we get
2x+3yz+y+z=0+242x+4y=24\Rightarrow 2x + 3y - z + y + z = 0 + 24 \Rightarrow 2x + 4y = 24
On dividing the whole equation by two, we get:
x+2y=12\Rightarrow x + 2y = 12 (4) - - - - - (4)
Multiplying equation (3) by 22and subtracting it to (2)
4x4y=48xy=12\Rightarrow 4x - 4y = 48 \Rightarrow x - y = - 12 (5) - - - - - - (5)
Subtracting equation (5) from (4), we get:
3y=24y=8\Rightarrow 3y = 24 \Rightarrow y = 8
Using it in equation (5), we obtain x=4x = - 4
Substituting it in (2), we can find the value for ‘z’
(2)(4)+(3)(8)z=0z=16\Rightarrow (2)( - 4) + (3)(8) - z = 0 \Rightarrow z = 16
Therefore, we can write the vector u=4i^+8j^+16k^\overrightarrow u = - 4\widehat i + 8\widehat j + 16\widehat k
The expression u\left| u \right| represents the magnitude of the vector, which can be given by the square root of the sum of the squares of the direction ratios, i.e.
u=(4)2+82+162=16+64+256=336\Rightarrow \left| {\overrightarrow u } \right| = \sqrt {{{( - 4)}^2} + {8^2} + {{16}^2}} = \sqrt {16 + 64 + 256} = \sqrt {336}
So the required expression u2{\left| u \right|^2} can be written as:
u2=u×u=(336)2=336\Rightarrow {\left| u \right|^2} = \left| u \right| \times \left| u \right| = {\left( {\sqrt {336} } \right)^2} = 336
Thus, the value of the required expression is u2=336{\left| u \right|^2} = 336

Hence, the option (C) is the correct answer.

Note: The key to solving this question was the formation of the equation (1)\left( 1 \right) which is to figure out the meaning of vectors being coplanar. The dot product of two vectors a and b\vec a{\text{ and }}\vec b is given by ab=abcosθ\vec a \cdot \vec b = \left| {\vec a} \right|\left| {\vec b} \right|\cos \theta , where ‘theta’ represents the angle between two vectors. So when we find the dot product of two perpendicular vectors, we get cosπ2=0ab=ab×0=0\cos \dfrac{\pi }{2} = 0 \Rightarrow \vec a \cdot \vec b = \left| a \right|\left| b \right| \times 0 = 0 .