Solveeit Logo

Question

Mathematics Question on Area Of A Parallelogram

Let OA=a,OB=12a+4b\overrightarrow{OA} = \vec{a}, \overrightarrow{OB} = 12\vec{a} + 4\vec{b} and OC=b\overrightarrow{OC} = \vec{b}, where OO is the origin. If SS is the parallelogram with adjacent sides OAOA and OCOC, thenarea of the quadrilateral OABCarea of S\frac{\text{area of the quadrilateral OABC}}{\text{area of } S}is equal to ___.

A

6

B

10

C

7

D

8

Answer

8

Explanation

Solution

Step 1. Area of parallelogram SS with adjacent sides OAOA and OCOC:
S=a×bS = |\vec{a} \times \vec{b}|
Step 2. Area of quadrilateral OABCOABC:

Area of OABC=Area of OAB+Area of OBC\text{Area of } OABC = \text{Area of } \triangle OAB + \text{Area of } \triangle OBC
=12a×(12a+4b)+12b×(12a+4b)= \frac{1}{2} \left| \vec{a} \times (12\vec{a} + 4\vec{b}) \right| + \frac{1}{2} \left| \vec{b} \times (12\vec{a} + 4\vec{b}) \right|
=124a×b+1212a×b= \frac{1}{2} |4\vec{a} \times \vec{b}| + \frac{1}{2} |12\vec{a} \times \vec{b}|
=8a×b= 8|\vec{a} \times \vec{b}|

Step 3. Ratio:

Ratio=Area of quadrilateral OABCArea of parallelogram S=8a×ba×b=8\text{Ratio} = \frac{\text{Area of quadrilateral } OABC}{\text{Area of parallelogram } S} = \frac{8|\vec{a} \times \vec{b}|}{|\vec{a} \times \vec{b}|} = 8

The Correct Answer is: 8