Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let OA=2a\overrightarrow{OA} = 2\vec{a}, OB=6a+5b\overrightarrow{OB} = 6\vec{a} + 5\vec{b}, and OC=3b\overrightarrow{OC} = 3\vec{b}, where OO is the origin. If the area of the parallelogram with adjacent sides OA\overrightarrow{OA} and OC\overrightarrow{OC} is 15 sq. units, then the area (in sq. units) of the quadrilateral OABCOABC is equal to:

A

38

B

40

C

32

D

35

Answer

35

Explanation

Solution

Given the quadrilateral OABC, we calculate its area step by step.
quadrilateral

Area of the parallelogram:

The area of the parallelogram formed by sides OA and OC is given by:

OA×OC=2a×3b=15\left| \overrightarrow{OA} \times \overrightarrow{OC} \right| = 2 \left| \overrightarrow{a} \times 3 \overrightarrow{b} \right| = 15

Simplify:

6a×b=156 \left| \overrightarrow{a} \times \overrightarrow{b} \right| = 15

a×b=52(1)\therefore \left| \overrightarrow{a} \times \overrightarrow{b} \right| = \frac{5}{2} \quad \cdots (1)

Area of the quadrilateral OABCOABC:

The area of the quadrilateral is:

Area=12d1×d2\text{Area} = \frac{1}{2} \left| \overrightarrow{d_1} \times \overrightarrow{d_2} \right|

Here:

d1=AC,d2=OB\overrightarrow{d_1} = \overrightarrow{AC}, \quad \overrightarrow{d_2} = \overrightarrow{OB}

Substituting:

Area=12AC×OB=12(3b2a)×(6a+5b)\text{Area} = \frac{1}{2} \left| \overrightarrow{AC} \times \overrightarrow{OB} \right| = \frac{1}{2} \left| (3 \overrightarrow{b} - 2 \overrightarrow{a}) \times (6 \overrightarrow{a} + 5 \overrightarrow{b}) \right|

Expanding the cross product:

=1218b×a10a×b= \frac{1}{2} \left| 18 \overrightarrow{b} \times \overrightarrow{a} - 10 \overrightarrow{a} \times \overrightarrow{b} \right|

Using a×b=52\left| \overrightarrow{a} \times \overrightarrow{b} \right| = \frac{5}{2} from (1):

=(14a×b)= \left( 14 \left| \overrightarrow{a} \times \overrightarrow{b} \right| \right)

=14×52=35= 14 \times \frac{5}{2} = 35

Final Answer: The area of the quadrilateral OABCOABC is 35.