Solveeit Logo

Question

Question: Let \(\overrightarrow n \) be a vector of magnitude \(3\sqrt 3 \) such that it makes equal acute ang...

Let n\overrightarrow n be a vector of magnitude 333\sqrt 3 such that it makes equal acute angles with the coordinate axes. Find the vector equation and also cartesian form of the equation of a plane passing through (1,1,2)\left( { - 1,1,2} \right) and normal to n\overrightarrow n .

Explanation

Solution

We will first find the value of cosine of angle made by the vector with the xx axis using the given condition and the property that cos2α+cos2β+cos2γ=1{\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1, where α,β,γ\alpha ,\beta ,\gamma are the angles made by the vector with the x,y,zx,y,z axis respectively. Then, find the value of vector n\overrightarrow n . Next, represent the equation of plane in vector form as (rp).n=0\left( {\overrightarrow r - \overrightarrow p } \right).\overrightarrow n = 0, where r\overrightarrow r is any vector on plane, p\overrightarrow p is the vector represented by the given point.

Complete step by step solution:
Let the vector n\overrightarrow n makes angle α,β,γ\alpha ,\beta ,\gamma be acute angles made with x,y,zx,y,z axis respectively.
Now, we know that the square of the sum of cosines of the angles made by the vector with each axis is equal to 1
That is, cos2α+cos2β+cos2γ=1{\cos ^2}\alpha + {\cos ^2}\beta + {\cos ^2}\gamma = 1
We are given that all the angles are equal, then α=β=γ\alpha = \beta = \gamma
Hence, we will have
cos2α+cos2α+cos2α=1 3cos2α=1 cos2α=13 cosα=±13  {\cos ^2}\alpha + {\cos ^2}\alpha + {\cos ^2}\alpha = 1 \\\ \Rightarrow 3{\cos ^2}\alpha = 1 \\\ \Rightarrow {\cos ^2}\alpha = \dfrac{1}{3} \\\ \Rightarrow \cos \alpha = \pm \dfrac{1}{{\sqrt 3 }} \\\
But, α\alpha is an acute angle, then,
cosα=13\cos \alpha = \dfrac{1}{{\sqrt 3 }}
The vector n\overrightarrow n can be calculated using the property,
n=n(cosαi^+cosβj\lower0.5em+cosγk\lower0.5em)\overrightarrow n = \left| {\overrightarrow n } \right|\left( {\cos \alpha \hat i + \cos \beta \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{j} + \cos \gamma \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{k} } \right)
We are also given that the magnitude of the vector n\overrightarrow n is 333\sqrt 3
And each of the angle is equal with the value cosα=13\cos \alpha = \dfrac{1}{{\sqrt 3 }}
Then, we will have,

\overrightarrow n = 3\sqrt 3 \left( {\dfrac{1}{{\sqrt 3 }}\hat i + \dfrac{1}{{\sqrt 3 }}\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j} + \dfrac{1}{{\sqrt 3 }}\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{k} } \right) \\\ \Rightarrow \overrightarrow n = 3\left( {\hat i + \overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j} + \overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{k} } \right) \\\
Therefore, the vector \overrightarrow n = 3\hat i + 3\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j} + 3\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{k}
But, we have to find the equation of the plane , where the plane passes through (1,1,2)\left( { - 1,1,2} \right)
Let \overrightarrow r = x\hat i + y\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j} + z\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{k} be any vector on the plane and the vector represented by the given point be \overrightarrow p = - \hat i + \overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j} + 2\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{k}
Also, vector n\overrightarrow n has to normal to the plane.
Then, (rp).n=0\left( {\overrightarrow r - \overrightarrow p } \right).\overrightarrow n = 0 represents the required plane.
On substituting the values in the above formula, we will get,
\left( {\left( {x\hat i + y\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j} + z\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{k} } \right) - \left( { - \hat i + \overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j} + 2\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{k} } \right)} \right).\left( {3\hat i + 3\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j} + 3\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{k} } \right) = 0 \\\ \Rightarrow \left( {\left( {x + 1} \right)\hat i + \left( {y - 1} \right)\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j} + \left( {z - 2} \right)\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{k} } \right).\left( {3\hat i + 3\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j} + 3\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{k} } \right) = 0 \\\ \Rightarrow 3\left( {x + 1} \right) + 3\left( {y - 1} \right) + 3\left( {z - 2} \right) = 0 \\\
On simplifying the above brackets, we will get,
3(x+1)+3(y1)+3(z2)=0 3x+3+3y3+3z6=0 3x+3y+3z6=0 x+y+z2=0  3\left( {x + 1} \right) + 3\left( {y - 1} \right) + 3\left( {z - 2} \right) = 0 \\\ \Rightarrow 3x + 3 + 3y - 3 + 3z - 6 = 0 \\\ \Rightarrow 3x + 3y + 3z - 6 = 0 \\\ \Rightarrow x + y + z - 2 = 0 \\\

Hence, the equation of the plane in the cartesian form is x+y+z2=0x + y + z - 2 = 0

Note:

If there is a plane and let \overrightarrow r = x\hat i + y\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j} + z\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{k} be any vector on plane and plane is passing through P(a,b,c)P\left( {a,b,c} \right) which can be represented as \overrightarrow p = a\hat i + b\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{j} + c\overset{\lower0.5em\hbox{\smash{\scriptscriptstyle\frown}}}{k} , and there is a normal n\overrightarrow n to the plane, then the equation of plane is given as (rp).n=0\left( {\overrightarrow r - \overrightarrow p } \right).\overrightarrow n = 0