Solveeit Logo

Question

Question: Let \(\overrightarrow a = \widehat i + \widehat j + \widehat k\) , \(\overrightarrow c = \widehat j ...

Let a=i^+j^+k^\overrightarrow a = \widehat i + \widehat j + \widehat k , c=j^k^\overrightarrow c = \widehat j - \widehat k and a vector b\overrightarrow b be such that a×b=c\overrightarrow a \times \overrightarrow b = \overrightarrow c and ab=3\overrightarrow a \cdot \overrightarrow b = 3 . Then b|\overrightarrow b | equals:
A) 113\sqrt {\dfrac{{11}}{3}}
B) 113\dfrac{{\sqrt {11} }}{3}
C) 113\dfrac{{11}}{{\sqrt 3 }}
D) 113\dfrac{{11}}{3}

Explanation

Solution

Assume the general expression for the vector b\overrightarrow b . The cross product of two vectors is a vector. Using this fact compare the vectors. Use the formula for modulus of a vector to find the final answer.

Complete step-by-step answer:
The data given in the problem is,
ab=3\overrightarrow a \cdot \overrightarrow b = 3.
a=i^+j^+k^\overrightarrow a = \widehat i + \widehat j + \widehat k
c=j^k^\overrightarrow c = \widehat j - \widehat k
Assume that the vector b\overrightarrow b is given by b=xi^+yj^+zk^\overrightarrow b = x\widehat i + y\widehat j + z\widehat k.
It is given that the dot product ab=3\overrightarrow a \cdot \overrightarrow b = 3.
By using the formula for dot product, we can write the following:
(i^+j^+k^)(xi^+yj^+ck^)=3(\widehat i + \widehat j + \widehat k) \cdot (x\widehat i + y\widehat j + c\widehat k) = 3
Therefore, simplifying the dot product we get,
x+y+z=3x + y + z = 3
Now it is given that a×b=c\overrightarrow a \times \overrightarrow b = \overrightarrow c .
Therefore, using the formula for cross product we write:
\left| {\begin{array}{*{20}{c}} {\widehat i}&{\widehat j}&{\widehat k} \\\ 1&1&1 \\\ x&y;&z; \end{array}} \right| = \widehat j - \widehat k
Simplify the determinant,
i^(zy)j^(zx)+k^(yx)=j^k^\widehat i\left( {z - y} \right) - \widehat j\left( {z - x} \right) + \widehat k\left( {y - x} \right) = \widehat j - \widehat k
Comparing Left-hand side and right-hand side.
zy=0z - y = 0
This implies that z=yz = y .
Similarly,
(zx)=1- \left( {z - x} \right) = 1
Implies that xz=1x - z = 1 .
And
yx=1y - x = - 1
Since we know that z=yz = y and x+y+z=3x + y + z = 3 therefore, x+2y=3x + 2y = 3.
Now x+2y=3x + 2y = 3 and yx=1y - x = - 1.
Solving these two equations simultaneously we get, y=23y = \dfrac{2}{3} and x=53x = \dfrac{5}{3}.
Now substituting these values inx+y+z=3x + y + z = 3 we get the following:
53+23+z=3\dfrac{5}{3} + \dfrac{2}{3} + z = 3
Simplifying for z we get the following:
z=373z = 3 - \dfrac{7}{3}
Therefore, z=23z = \dfrac{2}{3} .
Therefore, the vector b\overrightarrow b is b=53i^+23j^+23k^\overrightarrow b = \dfrac{5}{3}\widehat i + \dfrac{2}{3}\widehat j + \dfrac{2}{3}\widehat k .
Now we will take modulus of the above vector as follow:
b=(53)2+(23)2+(23)2\left| {\overrightarrow b } \right| = \sqrt {{{\left( {\dfrac{5}{3}} \right)}^2} + {{\left( {\dfrac{2}{3}} \right)}^2} + {{\left( {\dfrac{2}{3}} \right)}^2}}
Simplify the squares and then we get:
b=339\left| {\overrightarrow b } \right| = \sqrt {\dfrac{{33}}{9}}
We can simplify the square root by dividing numerator and denominator by 3.
Therefore, the value of the modulus is b=113\left| {\overrightarrow b } \right| = \sqrt {\dfrac{{11}}{3}} .

So, the correct answer is “Option A”.

Note: Here the important point to note is that the cross product is always vector. The modulus of the vector is always a scalar. We calculate the cross product and use it to find the component of the vector.