Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let, a=i^+2j^+k^,c=i^+j^+k^.\overrightarrow{a}=\widehat{i}+2\widehat{j}+\widehat{k}, \overrightarrow{c}=\widehat{i}+\widehat{j}+\widehat{k}. A vector coplanar to a\overrightarrow{a} and c\overrightarrow{c} of magnitude 13,\frac{1}{\sqrt{3}}, then the vector is

A

4i^j^+4k^4\widehat{i}-\widehat{j}+4\widehat{k}

B

4i^j^4k^4\widehat{i}-\widehat{j}-4\widehat{k}

C

2i^+j^+k^2\widehat{i}+\widehat{j}+\widehat{k}

D

None of these

Answer

4i^j^+4k^4\widehat{i}-\widehat{j}+4\widehat{k}

Explanation

Solution

Let vector r\overrightarrow{r} be coplanar to aandb.\overrightarrow{a} and \overrightarrow{b}.
\therefore \hspace25mm \overrightarrow{r}=\overrightarrow{a}+\overrightarrow{b}
\Rightarrow \hspace25mm \overrightarrow{r}=(\widehat{i}+2\widehat{j}+\widehat{k})+t(\widehat{i}-\widehat{j}+\widehat{k})
=i^(1+t)+j^(2t)+k^(1+t)=\widehat{i}(1+t)+\widehat{j}(2-t)+\widehat{k}(1+t)
The projection of \overrightarrow{r} on \overrightarrow{c}=\frac{1}{\sqrt{3}} \hspace15mm [given]
\Rightarrow \hspace25mm \frac{\overrightarrow{r}.\overrightarrow{c}}{| \overrightarrow{c} |}=\frac{1}{\sqrt{3}}
1.(1+t)+1.(2t)1.(1+t)3=13\Rightarrow \frac{| 1.(1+t)+1.(2-t)-1.(1+t) |}{\sqrt{3}}=\frac{1}{\sqrt{3}}
(2t)=±1t=1or3\Rightarrow (2-t)=\pm 1\Rightarrow t=1 or 3
when, t =1, we have r=2i^+j^+2k^\overrightarrow{r} =2\widehat{i}+\widehat{j}+2\widehat{k}
when, t =3, we have r=4i^j^+4k^\overrightarrow{r} =4\widehat{i}-\widehat{j}+4\widehat{k}