Question
Mathematics Question on Vector Algebra
Let, a=i+2j+k,c=i+j+k. A vector coplanar to a and c of magnitude 31, then the vector is
A
4i−j+4k
B
4i−j−4k
C
2i+j+k
D
None of these
Answer
4i−j+4k
Explanation
Solution
Let vector r be coplanar to aandb.
\therefore \hspace25mm \overrightarrow{r}=\overrightarrow{a}+\overrightarrow{b}
\Rightarrow \hspace25mm \overrightarrow{r}=(\widehat{i}+2\widehat{j}+\widehat{k})+t(\widehat{i}-\widehat{j}+\widehat{k})
=i(1+t)+j(2−t)+k(1+t)
The projection of \overrightarrow{r} on \overrightarrow{c}=\frac{1}{\sqrt{3}} \hspace15mm [given]
\Rightarrow \hspace25mm \frac{\overrightarrow{r}.\overrightarrow{c}}{| \overrightarrow{c} |}=\frac{1}{\sqrt{3}}
⇒3∣1.(1+t)+1.(2−t)−1.(1+t)∣=31
⇒(2−t)=±1⇒t=1or3
when, t =1, we have r=2i+j+2k
when, t =3, we have r=4i−j+4k