Solveeit Logo

Question

Question: Let \(\overrightarrow a = \overrightarrow j - \overrightarrow k \) and \(\overrightarrow c = \overri...

Let a=jk\overrightarrow a = \overrightarrow j - \overrightarrow k and c=ijk\overrightarrow c = \overrightarrow i - \overrightarrow j - \overrightarrow k . Then vector b\overrightarrow b satisfying (a×b)+c=0(\overrightarrow a \times \overrightarrow b ) + \overrightarrow c = \overrightarrow 0 and a.b=3\overrightarrow a .\overrightarrow b = 3 is:
A)2ij+2k B)ij2k C)i+j2k D)i+j2k  A)\,2\overrightarrow i - \overrightarrow j + 2\overrightarrow k \\\ B)\,\overrightarrow i - \overrightarrow j - 2\overrightarrow k \\\ C)\,\overrightarrow i + \overrightarrow j - 2\overrightarrow k \\\ D)\, - \overrightarrow i + \overrightarrow j - 2\overrightarrow k \\\

Explanation

Solution

In order to solve this question, assume b\overrightarrow b to be a variable vector. Then use a.b=3\overrightarrow a .\overrightarrow b = 3to get an equation among the variables. Next use (a×b)+c=0(\overrightarrow a \times \overrightarrow b ) + \overrightarrow c = \overrightarrow 0 and get the other equation. Solve the two equations and get your answer.

Complete step-by-step answer:
Let us assume that b=xi+yj+zk\overrightarrow b = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k
As given in the question, a=jk\overrightarrow a = \overrightarrow j - \overrightarrow k
Now, a.b=3\overrightarrow a .\overrightarrow b = 3
We know that dot-product is the multiplication of vectors in the same direction.
Therefore,

(jk).(xi+yj+zk)=3 0.x+1.y1.z=3 yz=3(1)  \Rightarrow \left( {\overrightarrow j - \overrightarrow k } \right).\left( {x\overrightarrow i + y\overrightarrow j + z\overrightarrow k } \right) = 3 \\\ \Rightarrow 0.x + 1.y - 1.z = 3 \\\ \Rightarrow y - z = 3\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to (1) \\\

We have got one equation in y&zy\,\&\,z. Now, we will use (a×b)+c=0(\overrightarrow a \times \overrightarrow b ) + \overrightarrow c = \overrightarrow 0 to obtain the second equation
Let us first find (a×b)(\overrightarrow a \times \overrightarrow b )
We know that cross-product is the multiplication of vectors in different directions.
Therefore,

(\overrightarrow a \times \overrightarrow b ) = \left( {\overrightarrow j - \overrightarrow k } \right) \times \left( {x\overrightarrow i + y\overrightarrow j + z\overrightarrow k } \right) \\\ = \left( {\begin{array}{*{20}{c}} {\overrightarrow i }&{\overrightarrow j }&{\overrightarrow k } \\\ 0&1&{ - 1} \\\ x&y;&z; \end{array}} \right) \\\ = \overrightarrow i (z + y) - \overrightarrow j (0 + x) + \overrightarrow k (0 - x) \\\ = \overrightarrow i (z + y) - \overrightarrow j (x) - \overrightarrow k (x) \\\

As given in the question , c=ijk\overrightarrow c = \overrightarrow i - \overrightarrow j - \overrightarrow k
Therefore, using the formula (a×b)+c=0(\overrightarrow a \times \overrightarrow b ) + \overrightarrow c = \overrightarrow 0 we get write the above equations as

\Rightarrow \overrightarrow i (z + y) - \overrightarrow j (x) - \overrightarrow k (x) + \overrightarrow i - \overrightarrow j - \overrightarrow k = 0\overrightarrow i + 0\overrightarrow j + 0\overrightarrow k \\\ \Rightarrow \overrightarrow i (z + y + 1) - \overrightarrow j (x + 1) - \overrightarrow k (x + 1) = 0\overrightarrow i + 0\overrightarrow j + 0\overrightarrow k $$ Comparing the coefficients from both sides $ \Rightarrow y + z + 1 = 0\,\,,\,\,x + 1 = 0\,\,,\,\,x = -1 \\\ \Rightarrow y + z = - 1 - - - - - - - - - - - - - (2)$ Adding equations (1) and (2) we get $ 2y = 2 \\\ y = 1 $ Using this value of $y = 1$ and substituting in (2) we get, $z = - 2$ Substituting value of $x$, $y$ and $z$ i.e $x= -1$ , $y= 1$ and $z= -2$ in $\overrightarrow b = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k $ We get ,$\overrightarrow b = - \overrightarrow i + \overrightarrow j - 2\overrightarrow k $ **So, the correct answer is “Option D”.** **Note:** Another method to solve this question would be taking cross product of$\overrightarrow a $ on both sides of equation $(\overrightarrow a \times \overrightarrow b ) + \overrightarrow c = \overrightarrow 0 $which will make $\overrightarrow a \times (\overrightarrow a \times \overrightarrow b ) + \overrightarrow a \times \overrightarrow c = \overrightarrow 0 $ Then use the formula for $\overrightarrow a \times (\overrightarrow a \times \overrightarrow b )$ which is $\overrightarrow a \times (\overrightarrow a \times \overrightarrow b ) = (\overrightarrow a .\overrightarrow b )\overrightarrow a - (\overrightarrow a .\overrightarrow a )\overrightarrow b $and then solve the question. This is a much shorter method but a bit complex so you need to practice it a lot before using it in questions.