Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a=i+j+k^,b=i^j^+k^\overrightarrow{a}=\overrightarrow{i}+\overrightarrow{j}+\hat{k}, \overrightarrow{b}=\hat{i}-\hat{j}+\hat{k} and c=ijk\overrightarrow{c}=\overrightarrow{i}-\overrightarrow{j}-\overrightarrow{k} be three vectors. A vector v^\hat{v} in the plane of a\overrightarrow{a} and b, \overrightarrow{b}, whose projection on c\overrightarrow{c} is 13,\frac{1}{\sqrt{3}}, is given by

A

i^3j^+3k^\widehat{i}-3\widehat{j}+3 \widehat{k}

B

3i^3j^k^-3\widehat{i}-3\widehat{j} -\widehat{k}

C

3i^j^+3k^3\widehat{i}-\widehat{j}+ 3\widehat{k}

D

i^+3j^3k^\widehat{i}+3\widehat{j}- 3\widehat{k}

Answer

3i^j^+3k^3\widehat{i}-\widehat{j}+ 3\widehat{k}

Explanation

Solution

Let v=a+λb\overrightarrow{v}=\overrightarrow{a}+\lambda\overrightarrow{b}
v=(1+λ)i^+(1+λ)j^(1+λ)k^\overrightarrow{v}=(1+\lambda)\widehat{i}+(1+\lambda)\widehat{j}(1+\lambda)\widehat{k}
Projection of vonc=13\overrightarrow{v} on \overrightarrow{c}=\frac{1}{\sqrt{3}}
\Rightarrow \hspace25mm \frac{\overrightarrow{v}.\overrightarrow{c}}{|\overrightarrow{c} | }=\frac{1}{\sqrt{3}}
(1+λ)(1λ)(1+λ)3=13\Rightarrow \frac{(1+\lambda)-(1-\lambda)-(1+\lambda)}{\sqrt{3}}=\frac{1}{\sqrt{3}}
\Rightarrow \hspace15mm 1+\lambda-1+\lambda-1-\lambda=1
\Rightarrow \hspace25mm \lambda-1=1
\Rightarrow \hspace25mm \lambda =2
\therefore \hspace25mm \overrightarrow{v}=3\widehat{i}-\widehat{j}+3\widehat{k}