Question
Mathematics Question on Vector Algebra
Let a=i+j+k^,b=i^−j^+k^ and c=i−j−k be three vectors. A vector v^ in the plane of a and b, whose projection on c is 31, is given by
A
i−3j+3k
B
−3i−3j−k
C
3i−j+3k
D
i+3j−3k
Answer
3i−j+3k
Explanation
Solution
Let v=a+λb
v=(1+λ)i+(1+λ)j(1+λ)k
Projection of vonc=31
\Rightarrow \hspace25mm \frac{\overrightarrow{v}.\overrightarrow{c}}{|\overrightarrow{c} | }=\frac{1}{\sqrt{3}}
⇒3(1+λ)−(1−λ)−(1+λ)=31
\Rightarrow \hspace15mm 1+\lambda-1+\lambda-1-\lambda=1
\Rightarrow \hspace25mm \lambda-1=1
\Rightarrow \hspace25mm \lambda =2
\therefore \hspace25mm \overrightarrow{v}=3\widehat{i}-\widehat{j}+3\widehat{k}