Solveeit Logo

Question

Question: Let \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \)be three unit vectors such that \(\o...

Let a,b,c\overrightarrow a ,\overrightarrow b ,\overrightarrow c be three unit vectors such that a×(b×c)=32(b+c)\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \dfrac{{\sqrt 3 }}{2}\left( {\overrightarrow b + \overrightarrow c } \right). If b\overrightarrow b is not parallel to c\overrightarrow c , then the angle between a\overrightarrow a and b\overrightarrow b is:
A) 3π4\dfrac{{3\pi }}{4}
B) π2\dfrac{\pi }{2}
C) 2π3\dfrac{{2\pi }}{3}
D) 5π6\dfrac{{5\pi }}{6}

Explanation

Solution

We are given that a,b,c\overrightarrow a ,\overrightarrow b ,\overrightarrow c be three unit vectors, so, a=b=c=1|\overrightarrow a | = |\overrightarrow b | = |\overrightarrow c | = 1. And we know that a×(b×c)=(a.c)b(a.b)c\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c . This is the theorem. So on further comparing this equation, you will get the answer.

Complete step-by-step answer:
So, according to the question, we are given that a,b,c\overrightarrow a ,\overrightarrow b ,\overrightarrow c be three unit vectors such that a×(b×c)=32(b+c)\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \dfrac{{\sqrt 3 }}{2}\left( {\overrightarrow b + \overrightarrow c } \right).
So from this statement, it is clear that the magnitude of a,b,c\overrightarrow a ,\overrightarrow b ,\overrightarrow c are equal to 11.
a=b=c=1|\overrightarrow a | = |\overrightarrow b | = |\overrightarrow c | = 1
Or a=b=c=1a = b = c = 1
A simple magnitude of a\overrightarrow a is written as aa.
As we know that
a×(b×c)=(a.c)b(a.b)c\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c
And it is given that a×(b×c)=32(b+c)\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = \dfrac{{\sqrt 3 }}{2}\left( {\overrightarrow b + \overrightarrow c } \right)
Let θ\theta be the angle between a\overrightarrow a and c\overrightarrow c .
Let β\beta be the angle between a\overrightarrow a and b\overrightarrow b .

So, a.c=accosθ\overrightarrow a .\overrightarrow c = ac\cos \theta
Where a=c=1a = c = 1
So, a.c=cosθ\overrightarrow a .\overrightarrow c = \cos \theta
Similarly, a.b=abcosβ\overrightarrow a .\overrightarrow b = ab\cos \beta
Where a=b=1a = b = 1
So, a.b=cosβ\overrightarrow a .\overrightarrow b = \cos \beta
So we got that
(a.c)b(a.b)c=32b+32c (cosθ)b(cosβ)c=32b+32c  \left( {\overrightarrow a .\overrightarrow c } \right)\overrightarrow b - \left( {\overrightarrow a .\overrightarrow b } \right)\overrightarrow c = \dfrac{{\sqrt 3 }}{2}\overrightarrow b + \dfrac{{\sqrt 3 }}{2}\overrightarrow c \\\ \left( {\cos \theta } \right)\overrightarrow b - \left( {\cos \beta } \right)\overrightarrow c = \dfrac{{\sqrt 3 }}{2}\overrightarrow b + \dfrac{{\sqrt 3 }}{2}\overrightarrow c \\\
Upon comparing both sides, we get
cosθ=32θ=30θ=π6\cos \theta = \dfrac{{\sqrt 3 }}{2} \Rightarrow \theta = {30^ \circ } \Rightarrow \theta = \dfrac{\pi }{6}
And
cosβ=32β=(ππ6)β=5π6\cos \beta = - \dfrac{{\sqrt 3 }}{2} \Rightarrow \beta = \left( {\pi - \dfrac{\pi }{6}} \right) \Rightarrow \beta = \dfrac{{5\pi }}{6}
So here we assume angle between a\overrightarrow a and b\overrightarrow b is β\beta that is 5π6\dfrac{{5\pi }}{6}

So, the correct answer is “Option D”.

Note: If b\overrightarrow b becomes parallel to c\overrightarrow c , then, b×c=0\overrightarrow b \times \overrightarrow c = 0. As bcsinθ=b×cbc\sin \theta = \overrightarrow b \times \overrightarrow c and bc\overrightarrow b ||\overrightarrow c , so θ=0\theta = 0. Therefore, b×c=0\overrightarrow b \times \overrightarrow c = 0. And (b×c)\left( {\overrightarrow b \times \overrightarrow c } \right) vector will be perpendicular to both b\overrightarrow b and c\overrightarrow c . So, if a,b,c\overrightarrow a ,\overrightarrow b ,\overrightarrow c are in same plane then a.(b×c)=b(a×c)=c(b×a)=0\overrightarrow a .\left( {\overrightarrow b \times \overrightarrow c } \right) = \overrightarrow b \left( {\overrightarrow a \times \overrightarrow c } \right) = \overrightarrow c \left( {\overrightarrow b \times \overrightarrow a } \right) = 0. As if ab\overrightarrow a \bot \overrightarrow b , then a.b=0\overrightarrow a .\overrightarrow b = 0.