Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a,b,c\overrightarrow{a},\overrightarrow{b},\overrightarrow{c} be unit vectors such that a+b+c=0.\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=\overrightarrow{0}. Which one of the following is correct?

A

a×b=b×c=c×a=0\overrightarrow{a}\times\overrightarrow{b}=\overrightarrow{b}\times\overrightarrow{c}=\overrightarrow{c}\times\overrightarrow{a}=\overrightarrow{0}

B

a×b=b×c=c×a0\overrightarrow{a}\times\overrightarrow{b}=\overrightarrow{b}\times\overrightarrow{c}=\overrightarrow{c}\times\overrightarrow{a}\ne \overrightarrow{0}

C

b×b=b×c=a×c=0\overrightarrow{b}\times\overrightarrow{b}=\overrightarrow{b}\times\overrightarrow{c}=\overrightarrow{a}\times\overrightarrow{c}=\overrightarrow{0}

D

a×b,b×c,c×a\overrightarrow{a}\times\overrightarrow{b},\overrightarrow{b}\times\overrightarrow{c},\overrightarrow{c}\times\overrightarrow{a} are mutually perpendicular

Answer

a×b=b×c=c×a0\overrightarrow{a}\times\overrightarrow{b}=\overrightarrow{b}\times\overrightarrow{c}=\overrightarrow{c}\times\overrightarrow{a}\ne \overrightarrow{0}

Explanation

Solution

Since, a,b,c\overrightarrow{a},\overrightarrow{b},\overrightarrow{c} are unit vectors and a+b+c=0\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}=\overrightarrow{0}
a,b,c\overrightarrow{a},\overrightarrow{b},\overrightarrow{c} represent an equilateral triangle.
\therefore \hspace25mm \overrightarrow{a}\times \overrightarrow{b}=\overrightarrow{b}\times\overrightarrow{c}=\overrightarrow{c}\times\overrightarrow{a}\ne \overrightarrow{0}.