Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a,b\overrightarrow{a},\overrightarrow{b} and c\overrightarrow{c} be three non-zero vectors such that b\overrightarrow{b} and c\overrightarrow{c} are non-collinear. If a+5b\overrightarrow{a}+5\overrightarrow{b} is collinear with c,b+6c\overrightarrow{c},\overrightarrow{b}+6\overrightarrow{c} is collinear with a\overrightarrow{a} and a+αb+βc=0\overrightarrow{a}+ α\overrightarrow{b} + β\overrightarrow{c} = 0, then α + β is equal to

A

35

B

30

C

-30

D

-25

Answer

35

Explanation

Solution

Set Up Collinearity Conditions: - Since a+5b\vec{a} + 5 \vec{b} is collinear with c\vec{c}, we can write:a+5b=λc\vec{a} + 5 \vec{b} = \lambda \vec{c}

Similarly, since b+6c\vec{b} + 6 \vec{c} is collinear with a\vec{a}, we write:b+6c=μa\vec{b} + 6 \vec{c} = \mu \vec{a}

Eliminate a\vec{a} and Find Relations: - Eliminating a\vec{a} from these equations, we get:

λc5b=6μc+1μb\lambda \vec{c} - 5 \vec{b} = \frac{6}{\mu} \vec{c} + \frac{1}{\mu} \vec{b}
Solving for μ\mu and λ\lambda, we find:

μ=15,λ=30\mu = -\frac{1}{5}, \quad \lambda = -30
Determine α\alpha and β\beta: - With α=5\alpha = 5 and β=30\beta = 30, we find:
α+β=5+30=35\alpha + \beta = 5 + 30 = 35
So, the correct option is: 35\mathbf{35}