Solveeit Logo

Question

Question: Let \[\overrightarrow{a}\] and \[\overrightarrow{b}\] be two unit vector such that\[\overrightarrow{...

Let a\overrightarrow{a} and b\overrightarrow{b} be two unit vector such thata.b=0\overrightarrow{a}.\overrightarrow{b}=0. For somex,yRx,y\in R, let c=xa+yb+(a×b)c=x\overrightarrow{a}+y\overrightarrow{b}+(\overrightarrow{a}\times \overrightarrow{b}). If c=2|c|=2 and the vector c is inclined at some angle α\alpha to both a and b then the value of 8cos2α8{{\cos }^{2}}\alpha is …. .

Explanation

Solution

We are given magnitude of a and b as 1 because they are unit vectors and there angle with c=xa+yb+(a×b)c=x\overrightarrow{a}+y\overrightarrow{b}+(\overrightarrow{a}\times \overrightarrow{b}) is α\alpha , so we will first calculate dot product of a and b with c, then we will square the c vector because we know the magnitude of c vector also , then after solving we will get the results .

Complete step-by-step answer:
We are given a\overrightarrow{a} and b\overrightarrow{b} be two unit vector such that a.b=0\overrightarrow{a}.\overrightarrow{b}=0, it means magnitude of vector a and b is 1 and angle between them is 90, also given a vector c=xa+yb+(a×b)c=x\overrightarrow{a}+y\overrightarrow{b}+(\overrightarrow{a}\times \overrightarrow{b}) and c=2|c|=2
vector c is inclined at some angle α\alpha to both a and b, for this let’s take dot product of c and a
then c and b
c.a=(xa+yb+(a×b)).a\overrightarrow{c}.\overrightarrow{a}=(x\overrightarrow{a}+y\overrightarrow{b}+(\overrightarrow{a}\times \overrightarrow{b})).\overrightarrow{a} , solving LHS and RHS differently and applying formula a.b=abcosα\overrightarrow{a}.\overrightarrow{b}=|a||b|cos\alpha , we get
c.a=cacosα\overrightarrow{c}.\overrightarrow{a}=|c||a|cos\alpha , now on putting c=2|\overrightarrow{c}|=2,a=1|\overrightarrow{a}|=1 and α\alpha angle between them
Which on solving both side we get 2×1×cosα=x2\times 1\times \cos \alpha =x
Similarly applying this for c and b we get 2×1×cosα=y2\times 1\times \cos \alpha =y

Now on putting values of x and y in vector c we get equation like c=2cosαa+2cosαb+(a×b)c=2\cos \alpha \overrightarrow{a}+2\cos \alpha \overrightarrow{b}+(\overrightarrow{a}\times \overrightarrow{b})
Further solving gives c=2cosα(a+b)+(a×b)c=2\cos \alpha (\overrightarrow{a}+\overrightarrow{b})+(\overrightarrow{a}\times \overrightarrow{b})
Now on squaring both side equation will look like, applying formula {{(\overrightarrow{a}+\overrightarrow{b})}^{2}}=|\overrightarrow{a}{{|}^{2}}+|\overrightarrow{b}{{|}^{2}}+2\overrightarrow{a}.\overrightarrow{b}$$$$|c{{|}^{2}}=4{{\cos }^{2}}\alpha {{(\overrightarrow{a}+\overrightarrow{b})}^{2}}+{{(\overrightarrow{a}\times \overrightarrow{b})}^{2}}+2\cos \alpha (\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}\times \overrightarrow{b})
Now here we know that c=2|\overrightarrow{c}|=2,(a+b)2=1+1=2{{(\overrightarrow{a}+\overrightarrow{b})}^{2}}=1+1=2 , (a×b)2=1×1×sin90=1{{(\overrightarrow{a}\times \overrightarrow{b})}^{2}}=1\times 1\times \sin 90=1 and (a+b).(a×b)=0(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}\times \overrightarrow{b})=0 because a and b are perpendicular
So, on putting values of these in equation c2=4cos2α(a+b)2+(a×b)2+2cosα(a+b).(a×b)|c{{|}^{2}}=4{{\cos }^{2}}\alpha {{(\overrightarrow{a}+\overrightarrow{b})}^{2}}+{{(\overrightarrow{a}\times \overrightarrow{b})}^{2}}+2\cos \alpha (\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}\times \overrightarrow{b})
We get 4=8cos2α+14=8{{\cos }^{2}}\alpha +1, which on solving gives
3=8cos2α3=8{{\cos }^{2}}\alpha , hence answer is 3

Note: Some of the students might have a doubt that how can we write this (a+b).(a×b)=0(\overrightarrow{a}+\overrightarrow{b}).(\overrightarrow{a}\times \overrightarrow{b})=0
It is because cross product of two vectors is always perpendicular those vectors so on taking dot product with the corresponding vectors it results into 0