Solveeit Logo

Question

Mathematics Question on Vectors

Let a\overrightarrow a and b\overrightarrow b be the vectors along the diagonals of a parallelogram having area 222\sqrt2. Let the angle between a\overrightarrow a and b\overrightarrow b be acute,a=1 |\overrightarrow a|=1, and ab=a×b|\overrightarrow a⋅\overrightarrow b|=|\overrightarrow a×\overrightarrow b| If c=22(a×b)2b\overrightarrow c=2\sqrt2(\overrightarrow a×\overrightarrow b→)−2\overrightarrow b then an angle betweenb \overrightarrow b and c\overrightarrow c is

A

π4\frac{π}{4}

B

π4-\frac{π}{4}

C

5π6\frac{5π}{6}

D

3π4\frac{3π}{4}

Answer

3π4\frac{3π}{4}

Explanation

Solution

a∵ \overrightarrow a and b\overrightarrow b be the vectors along the diagonals of a parallelogram having area 222\sqrt2.

12a×b=22∴\frac{1}{2}|\overrightarrow a×\overrightarrow b|=2\sqrt2

absinθ=42|\overrightarrow a||\overrightarrow b|sin⁡θ=4\sqrt2

bsinθ=42(i)⇒|\overrightarrow b|sin⁡θ=4\sqrt2…(i)

and

ab=a×b|\overrightarrow a⋅\overrightarrow b|=|\overrightarrow a×\overrightarrow b|

abcosθ=absinθ|\overrightarrow a||\overrightarrow b|cos⁡θ=|\overrightarrow a||\overrightarrow b|sin⁡θ

tanθ=1  θ=π4⇒tan⁡θ=1\;∴θ=\frac{π}{4}

By (i)

b=8|\overrightarrow b|=8

Now

c=22(a×b)2b\overrightarrow c=2\sqrt2(\overrightarrow a×\overrightarrow b)−2\overrightarrow b

cb=2b2=128(ii)⇒\overrightarrow c⋅\overrightarrow b=−2|\overrightarrow b|2=−128…(ii)

and

cc=8a×b2+4b2\overrightarrow c⋅\overrightarrow c=8|\overrightarrow a×\overrightarrow b|2+4|\overrightarrow b|2

c2=8.32+4.64⇒|\overrightarrow c|2=8.32+4.64

c=162(iii)⇒|\overrightarrow c|=16\sqrt2…(iii)

From (ii) and (iii)

cbcosα=128|\overrightarrow c||\overrightarrow b|cos⁡α=−128

cosα=12⇒cos⁡α=\frac{−1}{\sqrt2}

α=3π4α=\frac{3π}{4}