Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a\overrightarrow{a} and b\overrightarrow{b} be two unit vectors. If the vectors c=a+2b\overrightarrow{c} =\overrightarrow{a}+2\,\overrightarrow{b} and d=5a4b\overrightarrow{d} =5\,\overrightarrow{a}-4\,\overrightarrow{b} are perpendicular to each other, then the angle between a\overrightarrow{a} and b\overrightarrow{b} is .

A

π2\frac{\pi}{2}

B

π3\frac{\pi}{3}

C

π4\frac{\pi}{4}

D

π6\frac{\pi}{6}

Answer

π3\frac{\pi}{3}

Explanation

Solution

Since c\vec{c}, d\vec{d} are perpendicular cd=0\therefore \vec{c}\cdot\vec{d}=0 (a+2b).(5a4b)=0\therefore \left(\vec{a}+2\,\vec{b}\right).\left(5\,\vec{a}-4\,\vec{b}\right)=0 5a24ab+10ba8b2=0\Rightarrow 5\,\vec{a}^{2}-4\,\vec{a} \cdot \vec{b}+10\,\vec{b} \cdot \vec{a}-8\,\vec{b}^{2}=0 5(1)+6ab8(1)=0\Rightarrow5\left(1\right)+6\,\vec{a}\cdot\vec{b}-8\left(1\right)=0 6ab=85=3\Rightarrow 6\,\vec{a}\cdot\vec{b}=8-5=3 ab=36=12\Rightarrow \vec{a}\cdot\vec{b}=\frac{3}{6}=\frac{1}{2} (1)(1)cosθ=12\Rightarrow \left(1\right)\,\left(1\right)\,cos\,\theta=\frac{1}{2} θ=π3\Rightarrow \theta=\frac{\pi}{3}