Solveeit Logo

Question

Mathematics Question on Vector Algebra

Let a=2i^7j^+5k^,b=i^+k^\overrightarrow{ a }=2 \hat{i}-7 \hat{j}+5 \hat{k}, \overrightarrow{ b }=\hat{i}+\hat{k} and c=i^+2j^3k^\overrightarrow{ c }=\hat{i}+2 \hat{j}-3 \hat{k} be three given vectors If r\overrightarrow{ r } is a vector such that r×a=c×a\vec{r} \times \vec{a}=\vec{c} \times \vec{a} and rb=0\vec{r} \cdot \vec{b}=0, then r|\vec{r}| is equal to :

A

1172\frac{11}{7} \sqrt{2}

B

117\frac{11}{7}

C

9147\frac{\sqrt{914}}{7}

D

1152\frac{11}{5} \sqrt{2}

Answer

1172\frac{11}{7} \sqrt{2}

Explanation

Solution

a=2i^−7j^​+5k^
b=i^+k^
c=i^+2j^​−3k^
r×a=c×a⇒(r−c)×a=0
∴r=c+λa
r⋅b=0⇒c⋅b+λb⋅a=0
−2+λ(7)=0⇒λ=72​
∴r=c+72a​=71​(11i^−11k^)
∣r=7112​​