Solveeit Logo

Question

Question: Let $\overline{p}=4\hat{\imath}-\hat{\jmath}+\hat{k}$, $\overline{q}=11\hat{\imath}-\hat{\jmath}+\ha...

Let p=4ı^ȷ^+k^\overline{p}=4\hat{\imath}-\hat{\jmath}+\hat{k}, q=11ı^ȷ^+k^\overline{q}=11\hat{\imath}-\hat{\jmath}+\hat{k} and r\overline{r} be a vector such that (p+q)×r=r×(2p+3q)(\overline{p}+\overline{q})\times\overline{r}=\overline{r}\times(-2\overline{p}+3\overline{q}). If (2p+3q)r=1670(2\overline{p}+3\overline{q})\cdot\overline{r}=1670, then r2|\overline{r}|^{2} is equal to:

A

1600

B

1618

C

1627

D

1609

Answer

1618

Explanation

Solution

The first condition (p+q)×r=r×(2p+3q)(\overline{p}+\overline{q})\times\overline{r}=\overline{r}\times(-2\overline{p}+3\overline{q}) simplifies to (p+4q)×r=0(-\overline{p}+4\overline{q})\times\overline{r}=\overline{0}, implying r\overline{r} is parallel to p+4q-\overline{p}+4\overline{q}. Thus, r=k(p+4q)\overline{r}=k(-\overline{p}+4\overline{q}). Calculating p+4q=40ı^3ȷ^+3k^-\overline{p}+4\overline{q} = 40\hat{\imath}-3\hat{\jmath}+3\hat{k}. The second condition (2p+3q)r=1670(2\overline{p}+3\overline{q})\cdot\overline{r}=1670 is used to find kk. Calculating 2p+3q=41ı^5ȷ^+5k^2\overline{p}+3\overline{q} = 41\hat{\imath}-5\hat{\jmath}+5\hat{k}. Substituting r=k(40ı^3ȷ^+3k^)\overline{r}=k(40\hat{\imath}-3\hat{\jmath}+3\hat{k}) into the dot product gives k(41ı^5ȷ^+5k^)(40ı^3ȷ^+3k^)=1670k(41\hat{\imath}-5\hat{\jmath}+5\hat{k})\cdot(40\hat{\imath}-3\hat{\jmath}+3\hat{k}) = 1670, which simplifies to k(1640+15+15)=1670k(1640+15+15)=1670, so 1670k=16701670k=1670, leading to k=1k=1. Therefore, r=40ı^3ȷ^+3k^\overline{r}=40\hat{\imath}-3\hat{\jmath}+3\hat{k}. Finally, r2=402+(3)2+32=1600+9+9=1618|\overline{r}|^2 = 40^2+(-3)^2+3^2 = 1600+9+9 = 1618.