Solveeit Logo

Question

Question: Let $\omega_1$ and $\omega_2$ are complex numbers such that $\left|\frac{\omega_1-1}{\omega_1-4}\rig...

Let ω1\omega_1 and ω2\omega_2 are complex numbers such that ω11ω14=2\left|\frac{\omega_1-1}{\omega_1-4}\right|=2 and ω24ω21=2\left|\frac{\omega_2-4}{\omega_2-1}\right|=2. If ω1ω2max=αω1ω2min|\omega_1-\omega_2|_{max}=\alpha|\omega_1-\omega_2|_{min} (where ω1ω2max|\omega_1-\omega_2|_{max} and ω1ω2min|\omega_1-\omega_2|_{min} denote maximum and minimum value of ω1ω2|\omega_1-\omega_2| respectively). Then α\alpha equals to

A

2

B

10

C

9

D

11

Answer

9

Explanation

Solution

The locus of points zz satisfying zazb=k\left|\frac{z-a}{z-b}\right|=k where k1k \neq 1 is a circle (Circle of Apollonius).

  1. Locus of ω1\omega_1: Given ω11ω14=2\left|\frac{\omega_1-1}{\omega_1-4}\right|=2. This implies ω11=2ω14|\omega_1-1| = 2|\omega_1-4|. Squaring both sides: ω112=4ω142|\omega_1-1|^2 = 4|\omega_1-4|^2. Let ω1=x+iy\omega_1 = x+iy. (x1)2+y2=4((x4)2+y2)(x-1)^2 + y^2 = 4((x-4)^2 + y^2) x22x+1+y2=4(x28x+16+y2)x^2 - 2x + 1 + y^2 = 4(x^2 - 8x + 16 + y^2) 3x230x+63+3y2=03x^2 - 30x + 63 + 3y^2 = 0 x210x+21+y2=0x^2 - 10x + 21 + y^2 = 0 Completing the square for xx: (x5)2+y2=4(x-5)^2 + y^2 = 4. This is a circle C1C_1 with center c1=5c_1 = 5 and radius r1=2r_1 = 2.

  2. Locus of ω2\omega_2: Given ω24ω21=2\left|\frac{\omega_2-4}{\omega_2-1}\right|=2. This implies ω24=2ω21|\omega_2-4| = 2|\omega_2-1|. Squaring both sides: ω242=4ω212|\omega_2-4|^2 = 4|\omega_2-1|^2. Let ω2=x+iy\omega_2 = x+iy. (x4)2+y2=4((x1)2+y2)(x-4)^2 + y^2 = 4((x-1)^2 + y^2) x28x+16+y2=4(x22x+1+y2)x^2 - 8x + 16 + y^2 = 4(x^2 - 2x + 1 + y^2) 3x212+3y2=03x^2 - 12 + 3y^2 = 0 x2+y2=4x^2 + y^2 = 4. This is a circle C2C_2 with center c2=0c_2 = 0 and radius r2=2r_2 = 2.

  3. Distance between points on the circles: The distance between the centers of the circles is d=c1c2=50=5d = |c_1 - c_2| = |5 - 0| = 5. The minimum distance between points on C1C_1 and C2C_2 is ω1ω2min=dr1r2=522=1|\omega_1 - \omega_2|_{min} = d - r_1 - r_2 = 5 - 2 - 2 = 1. The maximum distance between points on C1C_1 and C2C_2 is ω1ω2max=d+r1+r2=5+2+2=9|\omega_1 - \omega_2|_{max} = d + r_1 + r_2 = 5 + 2 + 2 = 9.

  4. Finding α\alpha: We are given ω1ω2max=αω1ω2min|\omega_1-\omega_2|_{max}=\alpha|\omega_1-\omega_2|_{min}. Substituting the values: 9=α×19 = \alpha \times 1, so α=9\alpha = 9.