Question
Question: Let \(\omega\) is an imaginary cube root of unity then the value of \(2(\omega + 1)(\omega^{2} + 1)...
Let ω is an imaginary cube root of unity then the value of
2(ω+1)(ω2+1)+3(2ω+1)(2ω2+1)+.....+(n+1)(nω+1)(nω2+1) is
A
[2n(n+1)]2+n
B
[2n(n+1)]2
C
[2n(n+1)]2−n
D
None of these
Answer
[2n(n+1)]2+n
Explanation
Solution
Sol. 2(ω+1)(ω2+1)+3(2ω+1)(2ω2+1)+.....+(n+1)(nω+1)(nω2+1)=∑r=1n(r+1)(rω+1)(rω2+1)
=∑r=1n(r+1)(r2ω3+rω+rω2+1)=∑r=1n(r+1)(r2−r+1)=∑r=1n(r3−r2+r+r2−r+1) =∑r=1n(r3)+∑r=1n(1)=[2n(n+1)]2+n.