Solveeit Logo

Question

Mathematics Question on Algebra of Complex Numbers

Let ω=12+i32,\omega=-\frac{1}{2}+i\frac{\sqrt 3}{2}, then value of the determinant 111 11ω2ω2 1ω2ω is\begin {vmatrix} 1 & 1& 1 \\\ 1 & -1-\omega^2 & \omega^2 \\\ 1 & \omega^2 & \omega \\\ \end {vmatrix} is

A

3ω3 \omega

B

3ω(ω1)3 \omega(\omega-1)

C

3ω23 \omega^2

D

3ω(1ω)3 \omega(1- \omega)

Answer

3ω(ω1)3 \omega(\omega-1)

Explanation

Solution

Let δ=\delta= 111 11ω2ω2 1ω2ω is\begin {vmatrix} 1 & 1& 1 \\\ 1 & -1-\omega^2 & \omega^2 \\\ 1 & \omega^2 & \omega \\\ \end {vmatrix} is
Applying R2R@R1;R3R3R1R_2\rightarrow R_@-R_1;R_3\rightarrow R_3-R_1
=111 02ω2ω21 0ω21ω1 \begin {vmatrix} 1 & 1& 1 \\\ 0 & -2-\omega^2 & \omega^2-1 \\\ 0 & \omega^2-1 & \omega-1 \\\ \end {vmatrix}
=(2ω2)(ω1)(ω21)2=(-2-\omega^2)(\omega-1)-(\omega^2-1)^2
=2ω+2ω3+ω2(ω42ω2+1)=-2\omega+2-\omega^3+\omega^2-(\omega^4-2\omega^2+1)
=3ω23ω=3ω(ω1)          [ω4=ω]=3\omega^2-3\omega=3\omega(\omega-1) \ \ \ \ \ \ \ \ \ \ [\because \omega^4=\omega]