Question
Mathematics Question on Algebra of Complex Numbers
Let ω=−21+i23, then value of the determinant 1 1 1 1−1−ω2ω21ω2ωis
A
3ω
B
3ω(ω−1)
C
3ω2
D
3ω(1−ω)
Answer
3ω(ω−1)
Explanation
Solution
Let δ= 1 1 1 1−1−ω2ω21ω2ωis
Applying R2→R@−R1;R3→R3−R1
=1 0 0 1−2−ω2ω2−11ω2−1ω−1
=(−2−ω2)(ω−1)−(ω2−1)2
=−2ω+2−ω3+ω2−(ω4−2ω2+1)
=3ω2−3ω=3ω(ω−1) [∵ω4=ω]