Solveeit Logo

Question

Question: Let $\omega$ be a complex number such that $\left|\frac{\omega-i}{\omega+3i}\right|=1$ (where $i=\sq...

Let ω\omega be a complex number such that ωiω+3i=1\left|\frac{\omega-i}{\omega+3i}\right|=1 (where i=1i=\sqrt{-1}) and ω=7|\omega|=7. Then the value of ω+32i\left|\omega+\frac{3}{2}i\right| equals to

A

2012\frac{\sqrt{201}}{2}

B

7

C

5

D

1932\frac{\sqrt{193}}{2}

Answer

1932\frac{\sqrt{193}}{2}

Explanation

Solution

Let ω=x+iy\omega = x+iy. The condition ωiω+3i=1\left|\frac{\omega-i}{\omega+3i}\right|=1 implies ωi2=ω+3i2|\omega-i|^2 = |\omega+3i|^2. x+i(y1)2=x+i(y+3)2|x+i(y-1)|^2 = |x+i(y+3)|^2 x2+(y1)2=x2+(y+3)2x^2 + (y-1)^2 = x^2 + (y+3)^2 y22y+1=y2+6y+9y^2 - 2y + 1 = y^2 + 6y + 9 2y+1=6y+9-2y + 1 = 6y + 9 8y=88y = -8 y=1y = -1.

The condition ω=7|\omega|=7 implies ω2=49|\omega|^2=49. x2+y2=49x^2 + y^2 = 49 Substituting y=1y=-1: x2+(1)2=49x^2 + (-1)^2 = 49 x2+1=49x^2 + 1 = 49 x2=48x^2 = 48.

We need to find ω+32i\left|\omega+\frac{3}{2}i\right|. Substitute ω=x+iy=xi\omega = x+iy = x-i: xi+32i=x+i(12)\left|x-i+\frac{3}{2}i\right| = \left|x+i\left(\frac{1}{2}\right)\right| This is equal to x2+(12)2\sqrt{x^2 + \left(\frac{1}{2}\right)^2}. Substitute x2=48x^2=48: 48+14=192+14=1934=1932\sqrt{48 + \frac{1}{4}} = \sqrt{\frac{192+1}{4}} = \sqrt{\frac{193}{4}} = \frac{\sqrt{193}}{2}.