Solveeit Logo

Question

Mathematics Question on Determinants

Let ω\omega be a complex number such that 2ω+1=z2 \omega + 1 = z where z=3z = \sqrt{-3} ,If 111 1ω21ω2 1ω2ω7=3k,\begin{vmatrix}1&1&1\\\ 1&-\omega^{2} - 1 &\omega^{2}\\\ 1&\omega^{2}& \omega^{7}\end{vmatrix} = 3 k , then kk is equal to :

A

z

B

-1

C

1

D

-z

Answer

-z

Explanation

Solution

2ω+1=z,z=3i2\omega + 1 = z,\, z = \sqrt{3}i ω=1+3i2\omega = \frac{-1+\sqrt{3}i}{2}\to Cube root of unity. C1C1+C2+C3C_{1} \to C_{1}+ C_{2}+ C_{3} 111 11ω2ω2 1ω2ω7=111 1ωω2 1ω2ω=311 0ωω2 0ω2ω\begin{vmatrix}1&1&1\\\ 1&-1-\omega^{2}&\omega^{2}\\\ 1&\omega^{2}&\omega^{7}\end{vmatrix} = \begin{vmatrix}1&1&1\\\ 1&\omega&\omega^{2}\\\ 1&\omega^{2}&\omega\end{vmatrix} = \begin{vmatrix}3&1&1\\\ 0&\omega&\omega^{2}\\\ 0&\omega^{2}&\omega\end{vmatrix} =3(ω2ω4)= 3\left(\omega^{2}-\omega^{4}\right) =3[(13i2)(1+3i2)]= 3\left[\left(\frac{-1-\sqrt{3}i}{2}\right)-\left(\frac{-1+\sqrt{3}i}{2}\right)\right] =33i= -3\sqrt{3}i =3z= -3z k=z\therefore k = -z