Solveeit Logo

Question

Mathematics Question on Probability

Let ω\omega be a complex cube root of unity with ω\omega \, \ne 1. A fair die is thrown three times. If r1_1, r2_2 and r3_3 are the numbers obtained on the die, then the probability that ωr1+ωr2+ωr3=0,\omega ^{r_1} +\omega ^{r_2} +\omega ^{r_3}=0 , is

A

44579

B

44570

C

44601

D

Jan-36

Answer

44601

Explanation

Solution

Sample space A dice is thrown thrice, n(s)=6×6×6n (s) = 6 \times 6 \times 6
.Favorable events ωr1+ωr2+ωr3=0,\omega ^{r_1} +\omega ^{r_2} +\omega ^{r_3}=0 ,
i.e. (r1,r2,r3)(r_1,r_2,r_3) are ordered 3 triples which can take
values
\begin {array} \ (1,2,3) \\\ (1,2,6) \end {array} \begin {array} \ (1,5,3) \\\ (1,5,6) \end {array} \begin {array} \ (4,2,3) \\\ (4,2,6) \end {array} \begin {array} \ (4,5,3) \\\ (4,5,6) \end {array} \bigg \\} i.e., \ \ 8 \ ordered \ pairs and each can be arranged in 3! ways = 6
'
        n(E)=8×6    p(E)=8×66×6×6=29\therefore \ \ \ \ \ \ \ \ n(E)=8 \times 6 \ \ \Rightarrow \ \ p(E) =\frac{8 \times 6}{6 \times 6 \times 6} =\frac{2}{9}